• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
XUE Feng, LIU Yongbo, HU Zuoan, CHEN Yifei. Railcar Traffic Distribution and Route Optimization Model Based on Dynamic Penalty Function[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 941-948, 959. doi: 10.3969/j.issn.0258-2724.20210226
Citation: XUE Feng, LIU Yongbo, HU Zuoan, CHEN Yifei. Railcar Traffic Distribution and Route Optimization Model Based on Dynamic Penalty Function[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 941-948, 959. doi: 10.3969/j.issn.0258-2724.20210226

Railcar Traffic Distribution and Route Optimization Model Based on Dynamic Penalty Function

doi: 10.3969/j.issn.0258-2724.20210226
  • Received Date: 29 Mar 2021
  • Rev Recd Date: 13 Dec 2021
  • Available Online: 02 Aug 2022
  • Publish Date: 16 Dec 2021
  • In order to solve the constraint difficulty in the railway traffic distribution and route optimization model, and the inadequacy of swarm intelligence algorithm, a constraint optimization method based on penalty function is proposed. First, a virtual arc is set on the basis of the basic model of traffic distribution and route optimization, and the arc segment capability constraints in the model are relaxed by adding a penalty term to the objective function. Meanwhile, a dynamic update strategy is designed for the penalty intensity and penalty factor of the penalty term. Then, the improved grey wolf algorithm (IGWO) is applied to the solution of traffic distribution and route optimization models. Finally, combined with the road network data in a certain area, the models and algorithms before and after improvement are compared and analyzed. The results of case study show that, compared with the model before improvement, after introducing the penalty term, IGWO can find feasible solutions that satisfy the arc capacity constraints within a limited range; compared with the grey wolf algorithm (GWO), the distribution scheme calculated by IGWO reduces the average detour rate of the OD (origin-destination) cargo flow and the total cargo kilometers by 2.6% and 5.2%, respectively.

     

  • loading
  • [1]
    纪丽君,林柏梁,乔国会,等. 基于多商品流模型的铁路网车流分配和径路优化模型[J]. 中国铁道科学,2011,32(3): 107-110.

    JI Lijun, LIN Boliang, QIAO Guohui, et al. Car flow assignment and routing optimization model of railway network based on multi-commodity flow model[J]. China Railway Science, 2011, 32(3): 107-110.
    [2]
    温旭红,林柏梁,王龙,等. 基于多商品网络流理论的铁路车流分配及径路优化模型[J]. 北京交通大学学报,2013,37(3): 117-121. doi: 10.3969/j.issn.1673-0291.2013.03.022

    WEN Xuhong, LIN Boliang, WANG Long, et al. Optimization model for railway car flow assignment and routing plan based on multi-commodity network flow theory[J]. Journal of Beijing Jiaotong University, 2013, 37(3): 117-121. doi: 10.3969/j.issn.1673-0291.2013.03.022
    [3]
    温旭红,林柏梁,陈雷. 基于树形结构的铁路车流径路优化模型[J]. 铁道学报,2016,38(4): 1-6. doi: 10.3969/j.issn.1001-8360.2016.04.001

    WEN Xuhong, LIN Boliang, CHEN Lei. Optimization model of railway vehicle flow routing based on tree form[J]. Journal of the China Railway Society, 2016, 38(4): 1-6. doi: 10.3969/j.issn.1001-8360.2016.04.001
    [4]
    严余松,户佐安,李宵寅. 基于车流量波动的列车编组计划与车流径路综合优化[J]. 交通运输系统工程与信息,2017,17(4): 124-131. doi: 10.16097/j.cnki.1009-6744.2017.04.019

    YAN Yusong, HU Zuoan, LI Xiaoyin. Comprehensive optimization of train formation plan and wagon-flow path based on fluctuating wagon-flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 124-131. doi: 10.16097/j.cnki.1009-6744.2017.04.019
    [5]
    王文宪,柏伟,邓鹏. 考虑换重条件的重载直达车流组织研究[J]. 交通运输工程与信息学报,2013,11(1): 68-73. doi: 10.3969/j.issn.1672-4747.2013.01.013

    WANG Wenxian, BAI Wei, DENG Peng. Study on optimized organization scheme for through heavy haul trains based on changing-for-weight[J]. Journal of Transportation Engineering and Information, 2013, 11(1): 68-73. doi: 10.3969/j.issn.1672-4747.2013.01.013
    [6]
    UPADHYAY A, BOLIA N. Combined empty and loaded train scheduling for dedicated freight railway corridors[J]. Computers & Industrial Engineering, 2014, 76: 23-31.
    [7]
    BORNDÖRFER R, KLUG T, SCHLECHTE T, et al. The freight train routing problem for congested railway networks with mixed traffic[J]. Transportation Science, 2016, 50(2): 408-423. doi: 10.1287/trsc.2015.0656
    [8]
    YAGHINI M, MOMENI M, SARMADI M. An improved local branching approach for train formation planning[J]. Applied Mathematical Modelling, 2013, 37(4): 2300-2307. doi: 10.1016/j.apm.2012.05.016
    [9]
    KHALED A A, JIN M Z, CLARKE D B, et al. Train design and routing optimization for evaluating criticality of freight railroad infrastructures[J]. Transportation Research Part B:Methodological, 2015, 71: 71-84. doi: 10.1016/j.trb.2014.10.002
    [10]
    温旭红. 铁路车流分配优化模型与拉格朗日松弛算法求解研究[D]. 北京: 北京交通大学, 2016.
    [11]
    MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007
    [12]
    FARIS H, ALJARAH I, AL-BETAR M A, et al. Grey wolf optimizer:a review of recent variants and applications[J]. Neural Computing and Applications, 2018, 30(2): 413-435. doi: 10.1007/s00521-017-3272-5
    [13]
    ZHU E D, CRAINIC T G, GENDREAU M. Scheduled service network design for freight rail transportation[J]. Operations Research, 2014, 62(2): 383-400. doi: 10.1287/opre.2013.1254
    [14]
    黄戈文,蔡延光,戚远航,等. 自适应遗传灰狼优化算法求解带容量约束的车辆路径问题[J]. 电子学报,2019,47(12): 2602-2610.

    HUANG Gewen, CAI Yanguang, QI Yuanhang, et al. Adaptive genetic grey wolf optimizer algorithm for capacitated vehicle routing problem[J]. Acta Electronica Sinica, 2019, 47(12): 2602-2610.
    [15]
    WANG C Y, MA C, ZHOU J C. A new class of exact penalty functions and penalty algorithms[J]. Journal of Global Optimization, 2014, 58(1): 51-73. doi: 10.1007/s10898-013-0111-9
    [16]
    甘敏,彭辉. 一种新的自适应惩罚函数算法求解约束优化问题[J]. 信息与控制,2009,38(1): 24-28. doi: 10.3969/j.issn.1002-0411.2009.01.004

    GAN Min, PENG Hui. A new adaptive penalty function based algorithm for solving constrained optimization problems[J]. Information and Control, 2009, 38(1): 24-28. doi: 10.3969/j.issn.1002-0411.2009.01.004
    [17]
    吴亮红,王耀南,周少武,等. 采用非固定多段映射罚函数的非线性约束优化差分进化算法[J]. 系统工程理论与实践,2007,27(3): 128-133,160. doi: 10.3321/j.issn:1000-6788.2007.03.019

    WU Lianghong, WANG Yaonan, ZHOU Shaowu, et al. Differential evolution for nonlinear constrained optimization using non-stationary multi-stage assignment penalty function[J]. Systems Engineering—Theory & Practice, 2007, 27(3): 128-133,160. doi: 10.3321/j.issn:1000-6788.2007.03.019
    [18]
    肖赤心,蔡自兴,王勇,等. 一种基于佳点集原理的约束优化进化算法[J]. 控制与决策,2009,24(2): 249-253,258. doi: 10.3321/j.issn:1001-0920.2009.02.018

    XIAO Chixin, CAI Zixing, WANG Yong, et al. Constrained optimization evolutionary algorithm based on good lattice points principle[J]. Control and Decision, 2009, 24(2): 249-253,258. doi: 10.3321/j.issn:1001-0920.2009.02.018
    [19]
    张文胜,郝孜奇,朱冀军,等. 基于改进灰狼算法优化BP神经网络的短时交通流预测模型[J]. 交通运输系统工程与信息,2020,20(2): 196-203. doi: 10.16097/j.cnki.1009-6744.2020.02.029

    ZHANG Wensheng, HAO Ziqi, ZHU Jijun, et al. BP neural network model for short-time traffic flow forecasting based on transformed grey wolf optimizer algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 196-203. doi: 10.16097/j.cnki.1009-6744.2020.02.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article views(350) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return