• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
ZHU Bin, JIN Weidong, YU Zhibin. Intrapulse Feature Evaluation Model of Radar Emitter Signal Based on Differential Evolution, Particle Swarm Optimization and Projection Pursuit Algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 189-196. doi: 10.3969/j.issn.0258-2724.2018.01.023
Citation: ZHU Bin, JIN Weidong, YU Zhibin. Intrapulse Feature Evaluation Model of Radar Emitter Signal Based on Differential Evolution, Particle Swarm Optimization and Projection Pursuit Algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 189-196. doi: 10.3969/j.issn.0258-2724.2018.01.023

Intrapulse Feature Evaluation Model of Radar Emitter Signal Based on Differential Evolution, Particle Swarm Optimization and Projection Pursuit Algorithm

doi: 10.3969/j.issn.0258-2724.2018.01.023
  • Received Date: 20 May 2015
  • Publish Date: 25 Feb 2018
  • To address the problems in comprehensive evaluation of radar emitter signal (RES) intrapulse features, such as incomplete evaluation criteria and the lack of objectivity, a new comprehensive evaluation model of RES intrapulse features was proposed based on swarm intelligence. First, the comprehensive evaluation problem of RES intrapulse features was converted into an optimization problem of the conditional multivariate nonlinear objective function through the projection pursuit algorithm. Secondly, the new swarm intelligence algorithm was obtained through the combination of the improved particle swarm optimization algorithm and the differential evolution algorithm. Thirdly, the optimization and solution of the multivariate nonlinear objective function was achieved using the proposed algorithm. The simulation results show that the optimal fitness of the Rosenbrock test function of this new intelligence algorithm is minimal, and the optimal fitness values of the Rastrigrin test function and the Girewank test function are zero, indicating that the calculation accuracy of the proposed algorithm is better than the standard particle swarm optimization algorithm and the differential evolution algorithm. At the same time, the variance of the fitness value of the proposed algorithm is smaller than those of the standard particle swarm optimization algorithm and the differential evolution algorithm, which indicates that the convergence and robustness of the proposed algorithm are better. According to the objective function of the evaluation problem, the results of the proposed algorithm do not fluctuate when comparing the five optimization results with those of the accelerated genetic algorithm, which shows that the intrapulse feature evaluation model based on swarm intelligence can effectively achieve the objective of comprehensive evaluation of RES intrapulse features.

     

  • loading
  • GUO Qiang, QU Zhenshen, WANG Changhong. Pulse-to-pulse periodic signal sorting features and feature extraction in radar emitter pulse sequences[J]. Journal of Systems Engineering and Electronics, 2010, 21(3):382-389. doi: 10.3969/j.issn.1004-4132.2010.03.006
    GUO Qiang, NAN Pulong, ZHANG Xiaoyu, et al. Recognition of radar emitter signals based on SVD and AF main ridge slice[J]. Journal of Communications and Networks, 2015, 17(5):491-498. doi: 10.1109/JCN.2015.000087
    白航, 赵拥军, 胡德秀.时频图像局部二值模式特征在雷达信号分类识别中的应用[J].宇航学报, 2013, 34(1):139-146. doi: 10.3873/j.issn.1000-1328.2013.01.020

    BAI Hang, ZHAO Yongjun, HU Dexiu. Radar signal recognition based on the local binary pattern feature of time-frequency image[J]. Journal of Astronautics, 2013, 34(1):139-146. doi: 10.3873/j.issn.1000-1328.2013.01.020
    ZHU Bin, JIN Weidong, YU Zhibin. Texture feature extraction of advanced radar emitter signals[J]. ICIC Express Letters, 2014, 8(9):2383-2387.
    王世强, 张登福, 毕笃彦.双谱二次特征在雷达信号识别中的应用[J].西安电子科技大学学报, 2012, 39(2):127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021

    WANG Shiqiang, ZHANG Dengfu, BI Duyan. Research on recognizing the radar signal using the bispectrum cascade feature[J]. Journal of Xidian University, 2012, 39(2):127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021
    邓延丽, 金炜东, 李家会, 等.基于聚集离散性与可分性的雷达信号特征评价[J].计算机应用, 2013, 33(7):1946-1949. http://d.old.wanfangdata.com.cn/Periodical/jsjyy201307038
    DENG Yanli, JIN Weidong, LI Jiahui, et al. Feature evaluation of radar signal based on aggregation, discreteness and divisibility[J]. Journal of Computer Applications, 2013, 33(7):1946-1949. doi: 10.3724/SP.J.1087.2013.01946
    邓延丽, 金炜东, 余志斌.基于类别距离和Bhattacharyya距离的雷达信号特征评价[J].计算机应用研究, 2012, 29(11):4079-4081. doi: 10.3969/j.issn.1001-3695.2012.11.019

    DENG Yanli, JIN Weidong, YU Zhibin. Feature evaluation of radar signal based on category distance and Bhattacharyya distance[J]. Application Research of Computers, 2012, 29(11):4079-4081. doi: 10.3969/j.issn.1001-3695.2012.11.019
    吴思东, 朱明, 付克昌.基于多元集对分析的辐射源信号熵特征评价[J].电路与系统学报, 2013, 18(2):298-304. doi: 10.3969/j.issn.1007-0249.2013.02.050

    WU Sidong, ZHU Ming, FU Kechang. Entropy feature evaluation of radar emitter signals based on SPA[J]. Journal of Circuits and Systems, 2013, 18(2):298-304. doi: 10.3969/j.issn.1007-0249.2013.02.050
    徐璟, 何明浩, 陈昌孝.雷达辐射源信号识别结果评估方法研究[J].电波科学学报, 2014, 29(2):300-304, 315. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201402018

    XU Jing, HE Minghao, CHEN Changxiao. Performance evaluation method for radar emitter signals recognition[J]. Chinese Journal of Radio Science, 2014, 29(2):300-304, 315. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201402018
    徐璟, 何明浩, 陈昌孝.基于理想排序的雷达信号识别效能评估方法[J].电波科学学报, 2015, 30(3):554-559. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201503023

    XU Jing, HE Minghao, CHEN Changxiao. Effectiveness evaluation of signal recognition based on AHP-I2TOPSIS[J]. Chinese Journal of Radio Science, 2015, 30(3):554-559. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201503023
    徐璟, 何明浩, 郁春来.雷达辐射源信号识别效能评估的I2TOPSIS方法[J].信号处理, 2015, 31(3):253-258. doi: 10.3969/j.issn.1003-0530.2015.03.001

    XU Jing, HE Minghao, YU Chunlai. Effectiveness evaluation of radar emitter signal recognition based on I2TOPSIS[J]. Journal of Signal Processing, 31(3):253-258. doi: 10.3969/j.issn.1003-0530.2015.03.001
    YU Zhibin, CHEN Chunxia. The radar signal feature-separability model analysis[C]//Advanced Materials Research. Guangzhou: [s.n.], 2011, 268/269/270: 1484-1487.
    ZHU B, JIN W D, YU Z B, et al. Feature separability evaluation for advanced radar emitter signals[C]//Communications in Computer and Information Science. Shanghai: Springer-Verlag. 2012: 204-212.
    朱斌, 金炜东, 余志斌.复杂体制雷达辐射源信号特征的FAHP评价[J].计算机工程与应用, 2012, 48(20):18-22. doi: 10.3778/j.issn.1002-8331.2012.20.004

    ZHU Bin, JIN Weidong, YU Zhibin. FAHP-based feature evaluation for advanced radar emitter signals[J]. Computer Engineering and Applications, 2012, 48(20):18-22. doi: 10.3778/j.issn.1002-8331.2012.20.004
    段美军, 金炜东, 杨志新.一种雷达辐射源信号多目标特征评价模型[J].计算机应用研究, 2012, 29(8):2912-2914. doi: 10.3969/j.issn.1001-3695.2012.08.029

    DUAN Meijun, JIN Weidong, YANG Zhixin. Multi-objective characteristics evaluation model of radar emitter signal[J]. Application Research of Computers, 2012, 29(8):2912-2914. doi: 10.3969/j.issn.1001-3695.2012.08.029
    SU Yu, SHAN Shiguang, CHEN Xilin. Classifiability-based discriminatory projection pursuit[J]. IEEE Transactions on Neural Networks, 2011, 22(12):2050-2061. doi: 10.1109/TNN.2011.2170220
    ALADJEM M. Projection pursuit mixture density estimation[J]. IEEE Transactions on Signal Processing, 2005, 53(11):4376-4383. doi: 10.1109/TSP.2005.857007
    ZHU B, JIN W, YU Z. The distribution characteristics analysis of advanced RES feature[C]//Communications in Computer and Information Science. Singapore: Springer-Verlag. 2013: 429-434.
    MADHUBANTI M, AMITAVA C. A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding[J]. Expert Systems with Applications, 2008, 34(2):1341-1350. doi: 10.1016/j.eswa.2007.01.002
    CHIAM S C, TAN K C, MAMUN A Al. A memetic model of evolutionary PSO for computational finance applications[J]. Expert Systems with Applications, 2009, 36(2):3695-3711. doi: 10.1016/j.eswa.2008.02.048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views(410) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return