• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 26 Issue 5
Oct.  2013
Turn off MathJax
Article Contents
FU Jiyang, ZHONG Liang, HUANG Youqin, WANG Yanping, XU An. Wind-Resistant Optimization of Portal Frames Based on Quantum-Behaved Particle Swarm Algorithm[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 845-850. doi: 10.3969/j.issn.0258-2724.2013.05.010
Citation: FU Jiyang, ZHONG Liang, HUANG Youqin, WANG Yanping, XU An. Wind-Resistant Optimization of Portal Frames Based on Quantum-Behaved Particle Swarm Algorithm[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 845-850. doi: 10.3969/j.issn.0258-2724.2013.05.010

Wind-Resistant Optimization of Portal Frames Based on Quantum-Behaved Particle Swarm Algorithm

doi: 10.3969/j.issn.0258-2724.2013.05.010
  • Received Date: 10 Dec 2012
  • Publish Date: 25 Oct 2013
  • In order to make up for the insufficiency of researches on the structural wind-resistant optimization of large span roofs, the quantum-behaved particle swarm algorithm was adopted to optimize a large-span roof under wind loads. Equivalent static wind loads on the structure were obtained from the database of wind tunnel tests, and the search space of discrete variables was formed according to the shape steel table. An improved fitness function was proposed by defining a coordinate factor for constraint violation, and the over-flow dealing technique was constructed to guarantee the feasibility and convergence of the optimization. Ten runs of computation were carried out to determine the optimal design of the portal frame, and the validity of the optimal solution was checked in all wind directions. The research results show that the objective function decreases monotonically with respect to iterations, standard deviation for total mass is only 4% of its mean value, and the mean iteration number for every run is 24. Therefore, the quantum-behaved particle swarm algorithm displays strong robustness and high efficiency in the wind-resistant optimization of portal frames.

     

  • loading
  • CHAN C M. An optimality criteria algorithm for tall steel building design using commercial standard sections[J]. Structural Optimization, 1992, 5: 26-29.
    王维博,冯全源. 基于改进粒子群算法的工程项目综合优化[J]. 西南交通大学学报,2011,46(1): 76-83. WANG Weibo, FENG Quanyuan. Integrated optimiza-tion based on improved particle swarm optimization for engineering projects[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 76-83.
    卢启衡,冯晓云,王青元. 基于遗传算法的追踪列车优化[J]. 西南交通大学学报,2012,47(2): 265-270. LU Qiheng, FENG Xiaoyun, Wang Qinyuan. Optimization of genetic algorithm-based tracking train[J]. Journal of Southwest Jiaotong University, 2012, 47(2): 265-270.
    刘经宇,方彦军. 蚁群算法在城市交通路径选择中的应用[J]. 西南交通大学学报,2009,44(6): 912-917. LIU Jingyu, FANG Yanjun. Application of ant colony algorithm in urban transport path selection[J]. Journal of Southwest Jiaotong University, 2009, 44(6): 912-917.
    SUN J, XU W B, LIU J. Parameter selection of quantum-behaved particle swarm optimization[J]. Advances in Natural Computation, 2005, 3612: 543-552.
    FANG W, SUN J, DING Y R, et al. A review of quantum-behaved particle swarm optimization[J]. IETE Technical Review, 2010, 27(4): 336-348.
    余湘娟,高明军,柯弘生,等. 膨胀土路基填料的土工试验方法研究[J]. 河海大学学报,1999,27(4): 50-53. YU Xiangjuan, GAO Mingjun, KE Hongsheng, et al. Test method of subgrade for highway filled with swelling soil[J]. Journal of Hohai University, 1999, 27(4): 50-53.
    周桂成. 膨胀土力学参数的试验研究. 长沙:长沙理工大学,2006.
    韩华强. 非饱和膨胀土强度和变形特性的研究. 南京:南京水利科学研究院,2003.
    全国钢标准化技术委员会. GB/T 11263—2005 热轧H型钢和剖分T型钢[S]. 北京:中国标准出版社,2005.
    李小青,张耀庭,邹冰川. 铁路路基膨胀土填料的石灰改良试验研究[J]. 铁道工程学报,2006,9(6): 24-28,58. LI Xiaoqing, ZHANG Yaoting, ZOU Bingchuan. Experimental study on improving expansive soil filling of railway subgrade with lime [J]. Journal of Railway Engineering Society, 2006, 9(6): 24-28, 58.
    HOLMES J D. Effective static load distributions in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(2): 91-109.
    吴玖荣,董超超,徐安,等. 大跨度变截面门式刚架抗风优化设计研究[J]. 武汉理工大学学报,2012,34(2): 69-74. WU Jiuromg, DONG Chaochao, XU An, et al. Optimal design of large-span portal frame with variable cross-section under wind[J]. Journal of Wuhan University of Technology, 2012, 34(2): 69-74.
    熊海帆. 膨胀土水泥改性试验研究. 武汉:武汉理工大学,2010.
    中国建筑科学研究院. GB 50009—2012 建筑结构荷载规范[S]. 北京:中国建筑工业出版社,2012.
    段钢,白明洲,胡晓明. 石灰改良膨胀土力学性质的研究[J]. 岩土工程技术,2005,19(3): 130-133. DUAN Gang, BAI Mingzhou, HU Xiaoming. The research on mechanical character of expansive soil Improved by lime[J]. Geotechnical Engineering Technique, 2005, 19(3): 130-133.
    夏琼,杨有海. 石灰改良膨胀土填料试验研究[J]. 兰州交通大学学报,2009,28(4): 30-34. XIA Qiong, YANG Youhai. Experimental study of improved expansive soil filling with lime[J]. Journal of Lanzhou Jiaotong University, 2009, 28(4): 30-34.
    CLERC M, KENNEDY J. The particle swarm: explosion stability and convergence in a multi-dimensional complex space[J]. TEEE Transaction on Evolutionary Computation, 2002, 6: 58-73.
    张颂南. 石灰改良膨胀土室内试验研究. 南京:河海大学,2005.
    LI L J, HUANG Z B, LIU F. A heuristic particle swarm optimization method for truss structures with discrete variables[J]. Computer and Structures, 2009, 87(7/8): 435-443.
    COELHO L D S. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems[J]. Expert Systems with Applications, 2010, 37(2): 1676-1683.(中、英文编辑:付国彬) (上接第844页)
    王岗. 石灰改性膨胀土工程应用研究. 南京:南京林业大学,2006.
    陈涛,顾强康,郭院成. 石灰、水泥、粉煤灰改良膨胀土对比试验[J]. 公路,2008,6(6): 164-167. CHENG Tao, GU Qiangkang, GUO Yuancheng. Experimental study of improved expansive soil filling with lime, cement or coal ash[J]. Highway, 2008, 6(6): 164-167.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1162) PDF downloads(489) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return