• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 28 Issue 6
Dec.  2015
Turn off MathJax
Article Contents
BING Qichun, GONG Bowen, YANG Zhaosheng, LIN Ciyun, QU Xin. Traffic State Identification for Urban Expressway Based on Projection Pursuit Dynamic Cluster Model[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1164-1169. doi: 10.3969/j.issn.0258-2724.2015.06.027
Citation: BING Qichun, GONG Bowen, YANG Zhaosheng, LIN Ciyun, QU Xin. Traffic State Identification for Urban Expressway Based on Projection Pursuit Dynamic Cluster Model[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1164-1169. doi: 10.3969/j.issn.0258-2724.2015.06.027

Traffic State Identification for Urban Expressway Based on Projection Pursuit Dynamic Cluster Model

doi: 10.3969/j.issn.0258-2724.2015.06.027
  • Received Date: 09 Jan 2015
  • Publish Date: 25 Dec 2015
  • In order to improve the accuracy of traffic state identification for urban expressway based on the spot traffic parameters, a traffic state identification method based on projection pursuit dynamic cluster model was proposed using the mapping relationship between spot traffic parameters and traffic state. First, the projection index function was constructed by combined use of the projection pursuit technology and the dynamic cluster method, and the shuffled frog leaping algorithm was used to optimize the projection direction. Then, the traffic state identification threshold was determined using simulation data. Finally, validation and comparative analysis were carried out using both the simulated data and measured data. Experimental results indicate that the proposed model can effectively improve the accuracy of traffic state identification. The average identification rate is 97.01% and the average false identification rate is 0.86%. The average identification accuracy of proposed method is 8.9% and 4.5% higher than the BP neural network model and the fuzzy C-means clustering model, respectively.

     

  • loading
  • 姜桂艳. 道路交通状态判别技术[M]. 北京:人民交通出版社,2004: 66-67.
    BHASKAR A, TSUBOTA T, KIEU L M, et al. Urban traffic state estimation: fusing point and zone based data[J]. Transportation Record Part C: Emerging Technologies, 2014, 48: 120-142.
    XIA Jingxin, CHEN Mei. A nested clustering technique for freeway operating condition classification[J]. Journal of Computed-Aided Civil and Infrastructure Engineering, 2007, 22(6): 430-437.
    姜桂艳,冮龙晖,王江锋. 城市快速路交通拥挤识别方法[J]. 交通运输工程学报,2006,6(3): 87-91. JIANG Guiyan, GANG Longhui, WANG Jiangfeng. Traffic congestion identification method of urban expressway[J]. Journal of Traffic and Transportation Engineering, 2006, 6(3): 87-91.
    殷俊杰,丁宏飞,薄雾,等. 基于模糊聚类的城市快速路交通流状态划分[J]. 重庆交通大学学报:自然科学版,2013,32(4): 652-655. YIN Junjie, DING Hongfei, BO Wu, et al. Classification of urban expressway traffic flow situation based on fuzzy clustering[J]. Journal of Chongqing Jiaotong University: Natural Science, 2013, 32(4): 652-655.
    巫威眺,靳文舟,林培群. 基于BP神经网络的道路交通状态判别方法研究[J]. 交通信息与安全,2011,29(4): 71-74. WU Weitiao, JIN Wenzhou, LIN Peiqun. The method of traffic state identification based on BP neural network[J]. Journal of Transportation Information and Safety, 2011, 29(4): 71-74.
    张亮亮,贾元华,牛忠海,等. 交通状态划分的参数权重聚类方法研究[J]. 交通运输系统工程与信息,2014,14(6): 147-151. ZHANG Liangliang, JIA Yuanhua, NIU Zhonghai, et al. Traffic state classification based on parameter weighting and clustering method[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(6): 147-151.
    汪丽娜,陈晓宏,李粤安,等. 混合蛙跳算法和投影寻踪模型的洪水分类研究[J]. 水电能源科学,2009,27(2): 62-64. WANG Lina, CHEN Xiaohong, LI Yuean, et al. Study on flood classification based on shuffled frog leaping algorithm and projection pursuit model[J]. Water Resources and Power, 2009, 27(2): 62-64.
    倪长健,王顺久,崔鹏. 投影寻踪动态聚类模型及其在地下水分类中的应用[J]. 四川大学学报:工程科学版,2006,38(6): 29-33. NI Changjian, WANG Shunjiu, CUI Peng. Projection pursuit dynamic cluster model and its application in groundwater classification[J]. Journal of Sichuan University: Engineering Science Edition, 2006, 38(6): 29-33.
    王顺久,倪长健. 投影寻踪动态聚类模型及其应用[J]. 哈尔滨工业大学学报,2009,41(1): 178-180. WANG Shunjiu, NI Changjian. A projection pursuit dynamic cluster model and its application[J]. Journal of Harbin Institute of Technology, 2009, 41(1): 178-180.
    倪长健,崔鹏. 投影寻踪动态聚类模型[J]. 系统工程学报,2007,22(6): 634-638. NI Changjian, CUI Peng. Projection pursuit dynamic cluster model[J]. Journal of System Engineering, 2007, 22(6): 634-638.
    任若恩,王惠文. 多元统计数据分析:理论、方法、实例[M]. 北京:国防工业出版社,1999: 76-80.
    付强,赵小勇. 投影寻踪模型原理及其应用[M]. 北京:科学出版社,2006: 144-145.
    EUSUFF M, LANSEY K, PASHA F. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization[J]. Engineering Optimization, 2006, 38(2): 129-154.
    马平莉. 混合蛙跳算法研究[D]. 西安:西安电子科技大学,2013.
    姜桂艳,李继伟,张春勤. 城市主干道拥挤路段基于地点交通参数的行程速度估计[J]. 吉林大学学报:工学版,2010,40(5): 1023-1028. JIANG Guiyan, LI Jiwei, ZHANG Chunqin. Travel speed estimation for congested arterial road segment based on spot traffic parameters[J]. Journal of Jilin University: Engineering and Technology Edition, 2010,40(5): 1023-1028.
    冮龙晖. 城市道路交通状态判别及拥挤扩散范围估计方法研究[D]. 长春:吉林大学,2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(686) PDF downloads(379) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return