• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 19 Issue 1
Feb.  2006
Turn off MathJax
Article Contents
ZHANG Ge-xiang, RONG Hai-na, JIN Wei-dong. Application of Support Vector Machine to Radar Emitter Signal Recognition[J]. Journal of Southwest Jiaotong University, 2006, 19(1): 25-30.
Citation: ZHANG Ge-xiang, RONG Hai-na, JIN Wei-dong. Application of Support Vector Machine to Radar Emitter Signal Recognition[J]. Journal of Southwest Jiaotong University, 2006, 19(1): 25-30.

Application of Support Vector Machine to Radar Emitter Signal Recognition

  • Received Date: 08 Sep 2004
  • Publish Date: 25 Feb 2006
  • To enhance the ability of electronic warfare equipment to recognize signals,resemblance coefficient method was proposed to extract features from radar emitter signals,and support vector machine(SVM) was introduced to identify different signals automatically.Resemblance coefficient features have good stability and discriminability.SVM has good characteristics of simple structure,global optimum and strong generalization ability.Experimental results show that the introduced approach for recognizing radar emitter signals using resemblance coefficient and SVM is superior to the conventional ones.It works effectively in a large range of noise to signal ratio(5 to 20 dB) with the recognition error rate being as low as 2.68%.

     

  • loading
  • 黄知涛,周一宇,姜文利.基于相对无模糊相位重构的自动脉内调制特性分析[J].通信学报,2003,24(4):153-160.H uang Z T,Zhou Y Y,Jiang W L.The automatic analysis of intrapulse modulation characteristics based on the relatively non-ambiguity phase restoral[J].Journal of China Institute of Communications,2003,24(4):153-160.[2] Willson G B.Radar classification using a neural network [A].Applications of Artificial Neural Networks (1294) [C].Bellingham:SPIE,1990.200 210.[3] Shieh C S,Lin C T.A vector network for emitter identification[J].IEEE Transaction on antennas and propagation,2002,50(8):1 120-1 127.[4] ZhangG P.Neural networks for classification:a survey[J].IEEE Trans on System,Man,and Cybernetics-Part C:Application and Reviews,2000,30 (4):451-462.[5] 王守觉,王柏南.人工神经网络的多维空间几何分析及其理论[J].电子学报,2002,30(1):1-4.Wang S J,Wang B N.Analysis and theory of high-dimension space geometry for artificial neural networks [J].ACTA Electronica Sinica,2002,30(1):1-4.[6] 边肇祺,张学工.模式识别(第2版)[M].北京:清华大学出版社,2000.284-304.[7] Vapnik V.The nature of statistical learning theory[M].New York:Springer Verlag,1998.[8] Foody G M,Mathur A.A relative evaluation of multiclass image classification by support vector machines [J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(6):1 335-1 343.[9] Hsu C W,Lin C J.A comparison of methods for multiclass support vector machines [J].IEEE Transactions on Neural Networks,2002,13(2):415-425.[10] Rifkin R M.Everything old is new again:a fresh look at historical approaches in machine learning[D].Boston:Massachusettes Institute of Technology,2002.[11] Platt J C,Cristianini N,Shawe-Taylor J.Large margin DAG's for multiclass classification[J].Advances in Neural Information Processing Systems,2000,12:547-553.[12] Cheong S M,Oh S H,Lee S Y.Support vector machines with binary tree architecture for multi-class classification[J].Neural Information Processing-Letters and Reviews,2004,2 (3):47-51.[13] 张葛祥,金炜东,胡来招.基于粗集理论的雷达辐射源信号识别[J].西安交通大学学报,2005,39(8):871-875.Zhang G X,Jin W D,Hu L Z.Radar emitter signal recognition based on rough set theory [J].Journal of Xi'an Jiaotong University,2005,39(8):871-875.[14] Zhang G X,Jin W D,Hu L Z.Resemblance coefficient based intrapulse feature extraction approach for radar emitter signals [J].Chinese Journal of Electronics,2005,14(2):337-341.[15] 周荣星,祝向荣,王金金.高等数学(上册)[M].西安:西安电子科技大学出版社,1993.113.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1474) PDF downloads(378) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return