• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WU Xiaomei, GAO Qiang, DING Hao, FAN Yueming. Flexural Fatigue Performance of Concrete Prepared with Low-Heat Portland Cement[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 313-318. doi: 10.3969/j.issn.0258-2724.20160817
Citation: WU Xiaomei, GAO Qiang, DING Hao, FAN Yueming. Flexural Fatigue Performance of Concrete Prepared with Low-Heat Portland Cement[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 313-318. doi: 10.3969/j.issn.0258-2724.20160817

Flexural Fatigue Performance of Concrete Prepared with Low-Heat Portland Cement

doi: 10.3969/j.issn.0258-2724.20160817
  • Received Date: 16 Oct 2016
  • Rev Recd Date: 13 Feb 2017
  • Available Online: 30 May 2018
  • Publish Date: 01 Apr 2019
  • To investigate the influence of cementing materials on the fatigue performance of concretes, the flexural fatigue performance of concretes prepared with low-heat Portland cement and ordinary Portland cement at different stresses was studied by a four-point bending fatigue test method. Additionally, the relationship between microstructure and fatigue performance was studied by using DTA-TG, SEM, and MIP methods. It was observed that in comparison to the ordinary Portland cement, the low-heat Portland cement is favourable for the improvement of the fatigue life of the concrete under the same stress lever (0.75–0.90). As the curing age was extended from 28 days to 180 days, the flexural fatigue life of both the kinds of concrete with a loading of 3.49 MPa was increased by 230 452 times in low-heat Portland cement concrete and 8 168 times in case of ordinary Portland cement concrete. The fatigue life of low-heat Portland cement concrete on the 90th day and 180th day was 4.76 and 19.88 times higher than that of ordinary Portland cement concrete, respectively. The longer the curing age the better the anti-fatigue performance of low-heat cement concretes. The microstructure study indicated that low-heat Portland cement concrete consisted more C-S-H gel and less Ca(OH)2. Furthermore, low-heat Portland cement concrete had lower increase (less than 10%) on the most probable pore size; and the proportion of large pores after fatigue loading reduced the crack propagation and enhanced the anti-fatigue performance.

     

  • 郑克仁. 矿物掺合料对混凝土疲劳性能的影响及机理[D]. 南京: 东南大学, 2007
    郑克仁,孙伟,赵庆新,等. 基于混凝土基体和界面过渡区性质的疲劳方程[J]. 硅酸盐学报,2007,35(2): 236-241. doi: 10.3321/j.issn:0454-5648.2007.02.022

    ZHENG Keren, SUN Wei, ZHAO qingxin. Fatigue equation based on properties of concrete matrix and interfacial transition zone[J]. Journal of the Chinese Ceramic Society, 2007, 35(2): 236-241. doi: 10.3321/j.issn:0454-5648.2007.02.022
    LI Pingguo, WEI Sun. Study on the flexural fatigue performance and fractal mechanism of concrete with high proportions of ground granulated blast-furnace slag[J]. Cement and Concrete Research, 2007, 37(2): 242-250.
    SUN Wei. Fatigue performance and equations of roller compacted concrete with fly ash[J]. Cement and Concrete Research, 1998, 28(2): 309-315. doi: 10.1016/S0008-8846(97)00211-1
    孙伟,严云. 高强混凝土与钢纤维高强混凝土冲击和疲劳特性机理的研究[J]. 土木工程学报,1994,27(5): 20-27. doi: 10.3321/j.issn:1000-131X.1994.05.001

    SUN Wei, YAN Yun. Study on the mechanism of impact and fatigue behavior of high-strength concrete and steel fiber reinforced high-strength concrete[J]. China Civil Engineering Journal, 1994, 27(5): 20-27. doi: 10.3321/j.issn:1000-131X.1994.05.001
    张小辉. 钢纤维混凝土弯曲疲劳及其损伤特性和细观强度研究[D]. 昆明: 昆明理工大学, 2001
    姜丽伟,肖福贵. 辅特维纤维水泥混凝土抗折疲劳性能试验研究[J]. 森林工程,2006,22(6): 47-50. doi: 10.3969/j.issn.1001-005X.2006.06.017

    JIANG Liwei, XIAO Fugui. Experimental studies of the flexural fatigue-resistant performance of the forta-ferro fiber cement concrete[J]. Forest Engineering, 2006, 22(6): 47-50. doi: 10.3969/j.issn.1001-005X.2006.06.017
    LEE M K, BARR B I G. An overview of the fatigue behaviour of plain and fibre reinforced concrete[J]. Cement and Concrete Composites, 2004, 26(4): 299-305. doi: 10.1016/S0958-9465(02)00139-7
    徐铜鑫,吴笑梅,樊粤明. 不同熟料矿物含量的水泥对混凝土部分性能的影响[J]. 水泥,2013(4): 4-8. doi: 10.3969/j.issn.1007-3922.2013.04.003

    XU Tongxin, WU Xiaomei, FAN Yueming. Influence of different mineral composition of clinker on partial performance of concrete[J]. Cement, 2013(4): 4-8. doi: 10.3969/j.issn.1007-3922.2013.04.003
    王可良,隋同波,许尚杰,等. 高贝利特水泥混凝土的断裂韧性[J]. 硅酸盐学报,2012,40(8): 1139-1142.

    WANG Keliang, SUI Tongbo, XU Shangjie, et al. Fracture toughness of high belite cement concrete[J]. Journal of the Chinese Ceramic Society, 2012, 40(8): 1139-1142.
    王可良,隋同波,刘玲,等. 高贝利特水泥混凝土的抗拉性能[J]. 硅酸盐学报,2012,40(8): 1139-1142.

    WANG Keliang, SUI Tongbo, LIU Ling, et al. Tensile properties of high belite cement concrete[J]. Journal of the Chinese Ceramic Society, 2012, 40(8): 1139-1142.
    中国建筑科学研究院. JGJ63—89混凝土拌和用水标准[S]. 北京: 中国建筑工业出版社, 2002
    付智, 罗翥, 王大鹏,等. 公路水泥混凝土路面施工技术细则: JTG F30—2014[S]. 北京: 人民交通出版社, 2014
    中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2016
    沈威, 黄文熙, 闵盘荣. 水泥工艺学[M]. 武汉: 武汉工业大学出版社. 1999: 291-323
  • Relative Articles

    [1]XUE Gang, FU Qian, ZHOU Haifeng, SUN Lisuo. Experimental Study on Stress-Strain Relationship of Steel Slag Fine Aggregate Concrete Under Uniaxial Compression[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1165-1174. doi: 10.3969/j.issn.0258-2724.20210099
    [2]REN Juanjuan, DU Wei, DENG Shijie, FENG Xiang. Chloride Ion Transport in Concrete of Ballastless Track under Fatigue Loading[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 510-516. doi: 10.3969/j.issn.0258-2724.20190690
    [3]YANG Yongqing, LI Shiwei, LI Xiaobin, YU Qu. 3D Shrinkage and Creep Effects of Concrete Under Varying Temperature Environment[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 931-936. doi: 10.3969/j.issn.0258-2724.20170256
    [4]REN Juanjuan, DENG Shijie, YAN Yafei, DU Wei, NI Yuefeng. Influence of Train Load on Mechanical Property of Prefabricated Slab Track[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1210-1218. doi: 10.3969/j.issn.0258-2724.20170642
    [5]WANG Yongbao, JIA Yi, ZHAO Renda. Calculation of Internal Humidity Field of Concrete Based on ANSYS[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 54-60. doi: 10.3969/j.issn.0258-2724.2017.01.008
    [6]WEI Yang, ZHOU Mengqian, JI Xuewei, DUAN Maojun, LI Guofen. Flexural Performance of Composite Bamboo-Concrete Beams[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1148-1155. doi: 10.3969/j.issn.0258-2724.2017.06.015
    [7]LI Maohong, ZHANG Yujie, CHEN Hang, ZHAO Jumei. Effect of Dosage of Fly Ash and Blast Furnace Slag on Performance of Concrete Prepared with Poorly Graded Sand[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 342-346,353. doi: 10.3969/j.issn.0258-2724.2015.02.021
    [8]WANG Hailong|LIChaohong|XUGuangxing, . Mesoscopic Numerical Simulation of Bond Behavior of Ribbed Bars and Concrete[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 365-372. doi: 10.3969/j.issn.0258-2724.2011.03.002
    [9]CAO Jixing, CHEN Qiu, ZHANG Jiping. Simulation of SHPB Test on Concrete and Uniformity of Stresses[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 67-70.
    [10]LI Guhua, GAO Bo. Effect of Nano-SiO2 on Performance of Concrete in Dissolving/Crystalling Cycles of Salts[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 70-74.
    [11]ZHAO Shi-chun, SHIJian-ping. Computation of Flexural Rigidity of Steel Reinforced Concrete Beam[J]. Journal of Southwest Jiaotong University, 2004, 17(6): 730-733.
    [12]XIAChun, LIUHao-wu, YANQi-xiang. Pozzolanic Activity and Morphology Features of Concrete Admixture of Lithium-Salt Residue[J]. Journal of Southwest Jiaotong University, 2002, 15(1): 29-34.
    [13]XIA Chun, LIUHao-wu. Research on Fractal Characteristics of the Size-Distribution of Concrete Aggregates[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 186-189.
    [14]ZHANGKai-jing. Investigation on Shear Strength of the Oblique Section of Concrete Simply Supported Beam[J]. Journal of Southwest Jiaotong University, 2000, 13(1): 1-6.
  • Cited by

    Periodical cited type(8)

    1. 严先萃,陈文,蔡镇羽,高帅,马天宇,刘向阳. 疲劳混凝土硫酸盐侵蚀抗压强度演化规律及预测模型. 常州大学学报(自然科学版). 2025(01): 68-75+92 .
    2. 李振中,马晨,龚博,李辉,皮振宇,徐名凤,周健. 高抗折矿渣硫铝酸盐水泥混凝土抗疲劳性能研究. 市政技术. 2024(03): 164-170+205 .
    3. 程思嫄,陈代果,古巍. 氧化石墨烯改性水泥基注浆材料的制备及力学性能研究. 功能材料. 2023(02): 2153-2158 .
    4. 蒋明慧,刘贵文,薛暄译. 聚丙烯纤维混凝土在腐蚀-疲劳耦合作用下耐久性性能试验分析. 混凝土. 2023(03): 163-165+170 .
    5. 胡晴,焦北辰. 硅酸盐水泥混凝土路面结构设计. 交通世界. 2023(34): 81-83 .
    6. 游帆,念梦飞,郑建岚,罗素蓉. 再生骨料混凝土弯曲疲劳性能研究. 建筑结构学报. 2022(04): 134-141 .
    7. 赵国良,董成,王雷. 荷载多变的混凝土弯曲疲劳数值仿真. 计算机仿真. 2022(09): 343-347+414 .
    8. 杜敏,武亮,张建铭. 长龄期中低热混凝土断裂性能试验研究. 混凝土. 2021(01): 57-60 .

    Other cited types(12)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article views(620) PDF downloads(7) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return