• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 27 Issue 5
Oct.  2014
Turn off MathJax
Article Contents
ZHANG Min, CHENG Wenming, LIU Juan. Small Fault Detection and Classification Method for Complex Production Process[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 842-847. doi: 10.3969/j.issn.0258-2724.2014.05.016
Citation: ZHANG Min, CHENG Wenming, LIU Juan. Small Fault Detection and Classification Method for Complex Production Process[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 842-847. doi: 10.3969/j.issn.0258-2724.2014.05.016

Small Fault Detection and Classification Method for Complex Production Process

doi: 10.3969/j.issn.0258-2724.2014.05.016
  • Received Date: 20 Sep 2013
  • Publish Date: 25 Oct 2014
  • In order to monitor the condition of a complex production process, based on the multivariate statistical process control and support vector machine theory, the cumulative control chart principle was extended to multivariate form for data preprocessing, and the principal component analysis (PCA) was utilized to extract significant information from the complex production process. The effective data of small fault was obtained. Then, the statistical threshold values of normal data, statistic T2, and squared prediction error (SPE) of corresponding fault data were constructed to realize the small fault detection of the complex production process, and the support vector machine (SVM) multi-classification method was used to classify the detected fault modes. The simulation results of a hot mix asphalt production process show that in cases of small fluctuation, cyclical rise and fall respectively, the small fault detection recognition rate is about 95%, with an average improvement of 75% over the PCA method; the classification accuracy rate reaches 92.5%, improved 19.3% compared with the BP neural networks method.

     

  • loading
  • RUNGER G C, ALT F B, MONTGOMERY D C. Contributors to a multivariate statistical process control chart signal[J]. Communications in Statistics: Theory and Methods, 1996, 25(10): 2203-2213.
    WESTERHUIS J, GURDEN S P, SMILDE A K. Generalized contribution plots in multivariate statistical process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 95-114.
    LIEFTUCHT D, KRUGER U, XIE L, et al. Statistical monitoring of dynamic multivariate processes, part 2: identifying fault magnitude and signature[J]. Industrial and Engineering Chemistry Research, 2006, 45(5): 1677-1688.
    钱淑华,王新晴,李焕良. 二次型时频分布在机械故障诊断中的应用[J]. 西南交通大学学报,2003, 38(5): 578-580. QIAN Shuhua, WANG Xinqing, LI Huanliang. Application of quadric time-frequency distribution to mechanical fault diagnosis[J]. Journal of Southwest Jiaotong University, 2003, 38(5): 578-580.
    WANG H Q, SONG Z H, LI P. Fault detection behavior and performance analysis of principal component analysis based process monitoring methods[J]. Industrial and Engineering Chemistry Research, 2002, 41(10): 2455-2464.
    GE Zhiqiang, SONG Zhihuan, YANG Chujie. Small shift detection based on MCUSUM-ICA-PCA[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(3): 373-411.
    ZHANG Min, CHENG Wenming. Fault diagnosis method based on wavelet packet transform and kernel principal component analysis[J]. Journal of Compu-tational Information Systems, 2012, 8(14): 5835-5842.
    邱天,白晓静,郑茜予,等. 多元指数加权移动平均主元分析的微小故障检测[J]. 控制理论与应用,2014,31(1): 19-26. QIU Tian, BAI Xiaojing, ZHENG Xiyu, et al. Incipient fault detection of multivariate exponentially weighted moving average principal component analysis[J]. Control Theory and Applications, 2014, 31(1): 19-26.
    张杰,阳宪惠. 多变量统计过程控制[M]. 北京:化学工业出版社,2000: 30-70.
    LAU K W, WU Q H. Online training of support vector classifier[J]. Pattern Recognition, 2003, 36(8): 1913-1920.
    COSTACHE G N, CORCORAN P, PUSLECKI P. Combining PCA-based datasets without retraining of the basis vector set[J]. Pattern Recognition Letters, 2009, 30(16): 1441-1447.
    TAMURA M, TSUJITA S. A study on the number of principal components and sensitivity of fault detection using PCA[J]. Computers and Chemical Engineering, 2007, 31(9): 1035-1046.
    RANAEE V, EBRAHIMZADEH A, GHADERI R. Application of the PSO-SVM model for recognition of control chart patterns[J]. ISA Transaction, 2010, 49(4): 577-586.
    秦娜,金炜东,黄进,等. 基于EEMD样本熵的高速列车转向架故障特征提取[J]. 西南交通大学学报,2014,49(1): 27-32. QIN Na, JIN Weidong, HUANG Jin, et al. Feature extraction of high speed train bogie based on ensemble empirical mode decomposition and sample entropy[J]. Journal of Southwest Jiaotong University, 2014, 49(1): 27-32.
    ABADURMUS O, PATHAK O, SMITH J S, et al. A simulation methodology for online process control of hot mix asphalt (HMA) production[C]//Proceedings of the 2010 Winter Simulation Conference. Baltimore:[s.n.], 2010: 522-1533.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(789) PDF downloads(548) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return