Citation: | ZHANG Min, CHENG Wenming, LIU Juan. Small Fault Detection and Classification Method for Complex Production Process[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 842-847. doi: 10.3969/j.issn.0258-2724.2014.05.016 |
RUNGER G C, ALT F B, MONTGOMERY D C. Contributors to a multivariate statistical process control chart signal[J]. Communications in Statistics: Theory and Methods, 1996, 25(10): 2203-2213.
|
WESTERHUIS J, GURDEN S P, SMILDE A K. Generalized contribution plots in multivariate statistical process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 95-114.
|
LIEFTUCHT D, KRUGER U, XIE L, et al. Statistical monitoring of dynamic multivariate processes, part 2: identifying fault magnitude and signature[J]. Industrial and Engineering Chemistry Research, 2006, 45(5): 1677-1688.
|
钱淑华,王新晴,李焕良. 二次型时频分布在机械故障诊断中的应用[J]. 西南交通大学学报,2003, 38(5): 578-580. QIAN Shuhua, WANG Xinqing, LI Huanliang. Application of quadric time-frequency distribution to mechanical fault diagnosis[J]. Journal of Southwest Jiaotong University, 2003, 38(5): 578-580.
|
WANG H Q, SONG Z H, LI P. Fault detection behavior and performance analysis of principal component analysis based process monitoring methods[J]. Industrial and Engineering Chemistry Research, 2002, 41(10): 2455-2464.
|
GE Zhiqiang, SONG Zhihuan, YANG Chujie. Small shift detection based on MCUSUM-ICA-PCA[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(3): 373-411.
|
ZHANG Min, CHENG Wenming. Fault diagnosis method based on wavelet packet transform and kernel principal component analysis[J]. Journal of Compu-tational Information Systems, 2012, 8(14): 5835-5842.
|
邱天,白晓静,郑茜予,等. 多元指数加权移动平均主元分析的微小故障检测[J]. 控制理论与应用,2014,31(1): 19-26. QIU Tian, BAI Xiaojing, ZHENG Xiyu, et al. Incipient fault detection of multivariate exponentially weighted moving average principal component analysis[J]. Control Theory and Applications, 2014, 31(1): 19-26.
|
张杰,阳宪惠. 多变量统计过程控制[M]. 北京:化学工业出版社,2000: 30-70.
|
LAU K W, WU Q H. Online training of support vector classifier[J]. Pattern Recognition, 2003, 36(8): 1913-1920.
|
COSTACHE G N, CORCORAN P, PUSLECKI P. Combining PCA-based datasets without retraining of the basis vector set[J]. Pattern Recognition Letters, 2009, 30(16): 1441-1447.
|
TAMURA M, TSUJITA S. A study on the number of principal components and sensitivity of fault detection using PCA[J]. Computers and Chemical Engineering, 2007, 31(9): 1035-1046.
|
RANAEE V, EBRAHIMZADEH A, GHADERI R. Application of the PSO-SVM model for recognition of control chart patterns[J]. ISA Transaction, 2010, 49(4): 577-586.
|
秦娜,金炜东,黄进,等. 基于EEMD样本熵的高速列车转向架故障特征提取[J]. 西南交通大学学报,2014,49(1): 27-32. QIN Na, JIN Weidong, HUANG Jin, et al. Feature extraction of high speed train bogie based on ensemble empirical mode decomposition and sample entropy[J]. Journal of Southwest Jiaotong University, 2014, 49(1): 27-32.
|
ABADURMUS O, PATHAK O, SMITH J S, et al. A simulation methodology for online process control of hot mix asphalt (HMA) production[C]//Proceedings of the 2010 Winter Simulation Conference. Baltimore:[s.n.], 2010: 522-1533.
|