• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 54 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
ZHANG Min, CAI Zhenyu, BAO Shanshan. Fault Diagnosis of Rolling Bearing Based on EEMD-Hilbert and FWA-SVM[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639, 662. doi: 10.3969/j.issn.0258-2724.20170435
Citation: ZHANG Min, CAI Zhenyu, BAO Shanshan. Fault Diagnosis of Rolling Bearing Based on EEMD-Hilbert and FWA-SVM[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639, 662. doi: 10.3969/j.issn.0258-2724.20170435

Fault Diagnosis of Rolling Bearing Based on EEMD-Hilbert and FWA-SVM

doi: 10.3969/j.issn.0258-2724.20170435
  • Received Date: 14 Jun 2017
  • Rev Recd Date: 16 Oct 2017
  • Available Online: 22 Feb 2019
  • Publish Date: 01 Jun 2019
  • To effectively extract the non-stationary characteristics of the rolling bearing vibration signal and improve the fault diagnosis efficiency, a feature extraction method based on the ensemble empirical mode decomposition (EEMD) and Hilbert transform was proposed. The support vector machine (SVM) classification parameters were optimised using the fireworks algorithm (FWA) for the rolling bearing fault diagnosis method. The EEMD method was used to decompose the target signal into several modal functions. The instantaneous frequencies of the modal functions were obtained through Hilbert transforms. Statistical feature extraction and dimensionality reduction were respectively performed for the modal function and instantaneous frequency. The fireworks algorithm model was used to optimise the SVM parameters as well as the multi-classification fault diagnosis with training and test sets drawn from 600 datasets. The accuracy of the signal is estimated to be 99.633%, which is 0.4% and 0.2% higher than that of the traditional genetic algorithm and particle swarm optimisation algorithm, respectively. Further, the ability of iterative convergence is also seen to have obvious advantages. The feasibility and validity of the algorithm models are thus verified.

     

  • loading
  • TANDON N, CHOUDHURY A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings[J]. Tribology International, 1999, 32(8): 469-480.
    于德介, 程军圣, 杨宇. 机械故障诊断的Hilbert-Huang变换方法[M]. 北京: 科学出版社, 2006: 4-12
    HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1998, 454: 903-995.
    黄建,胡晓光,巩玉楠. 基于经验模态分解的高压短路机械故障诊断方法[J]. 中国电机工程学报,2011,31(12): 108-113.

    HUANG Jian, HU Xiaoguang, GONG Yumin. Model fault diagnosis method of high voltage short circuit based on empirical mode decomposition[J]. Proceeding of the CSEE, 2011, 31(12): 108-113.
    时培明,李庚,韩冬颖. 基于改进 EMD的旋转机械耦合故障诊断方法研究[J]. 中国机械工程,2013,24(17): 2367-2372.

    SHI Peiming, LI Geng, HAN Dongying. Study on coupling fault diagnosis method of rotating machinery based on improved EMD[J]. China Mechanical Engineering, 2013, 24(17): 2367-2372.
    WU Z, HUANG N. Ensemble empirical mode decomposition:a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
    秦娜,金炜东,黄进,等. 基于EEMD样本熵的高速列车转向架故障特征提取[J]. 西南交通大学学报,2014,49(1): 27-32.

    QIN Na, JIN Weidong, HUANG Jin, et al. Fault feature extraction of high-speed train bogies based on eemd sample entropy[J]. Journal of Southwest Jiaotong University, 2014, 49(1): 27-32.
    AlVAR M, SANCHEZ A, ARRANZ A. Fast background subtraction using static and dynamic gates[J]. Artificial Intelligence Review, 2014, 41(1): 113-128.
    何青,褚东亮,毛新华,等. 基于EEMD和 MFFOA-SVM滚动轴承故障诊断[J]. 中国机械工程,2016,27(9): 1191-1197.

    HE Qing, ZHU Dongliang, MAO Xinhua, et al. Fault diagnosis of rolling bearing based on EEMD and MFFOA-SVM[J]. China Mechanical Engineering, 2016, 27(9): 1191-1197.
    TAN Y, ZHU Y. Fireworks algorithm for optimization [C]//International Conference in Swarm Intelligence. Berlin: Springer, 2010: 355-364
    顾军华,赵燕,董瑶. 基于FWA-SVM的室内无线定位研究[J]. 河北工业大学学报,2016,45(6): 35-40.

    GU Junhua, ZHAO Yan, DONG Yao. Study on indoor wireless location based on FWA-SVM[J]. Journal of Hebei University of Technology, 2016, 45(6): 35-40.
    高宏宾,侯杰,李瑞光. 基于核主成分分析的数据流降维研究[J]. 计算机工程与应用,2013,49(11): 105-109.

    GAO Hongbin, HOU Jie, LI Ruiguang. Research on dimension reduction of data flow based on kernel principal component analysis[J]. Computer Engineering and Applications, 2013, 49(11): 105-109.
    陈维荣,关佩,邹月娴. 基于SVM的交通事件检测技术[J]. 西南交通大学学报,2011,46(1): 63-67.

    CHEN Weirong, GUAN Pei, ZOU Yuexian. A traffic event detection technology based on SVM[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 63-67.
    于世飞,齐丙娟,谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报,2011,40(1): 2-10.

    YU Shifei, QI Bingjuan, TAN Hongyan. Study on support vector machine theory and algorithm[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10.
    叶林,刘鹏. 基于经验模态分解和支持向量机的短期风电功率组合预测模型[J]. 中国电机工程学报,2011,31(31): 102-108.

    YE Lin, LIU Peng. Study on short-term wind power combination forecasting model based on empirical mode decomposition and support vector machine[J]. Proceeding of the CSEE, 2011, 31(31): 102-108.
    谭营,郑少秋. 烟花算法研究进展[J]. 智能系统学报,2014(5): 515-528.

    TAN Ying, ZHENG Shaoqiu. Research progress of fireworks algorithm[J]. Journal of Intelligent Systems, 2014(5): 515-528.
    张乾, 基于振动信号的轴承状态监测和故障诊断方法研究[D]. 长沙: 中南大学, 2012
    张敏,程文明,刘娟. 复杂生产过程小故障诊断与分类方法研究[J]. 西南交通大学学报,2014,49(5): 842-847.

    ZHANG Min, CHENG Wenming, LIU Juan. Study on fault diagnosis and classification of complex production processes[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 842-847.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article views(577) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return