Loading [MathJax]/jax/output/SVG/jax.js
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法

张敏 蔡振宇 包珊珊

付善强, 吴冬华, 韩伟涛, 周颖. 基于非线性材料的高速磁浮电磁铁建模与分析[J]. 西南交通大学学报, 2023, 58(4): 879-885. doi: 10.3969/j.issn.0258-2724.20220741
引用本文: 张敏, 蔡振宇, 包珊珊. 基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法[J]. 西南交通大学学报, 2019, 54(3): 633-639, 662. doi: 10.3969/j.issn.0258-2724.20170435
FU Shanqiang, WU Donghua, HAN Weitao, ZHOU Ying. Modeling and Analysis of High-Speed Maglev Electromagnets Based on Nonlinear Materials[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 879-885. doi: 10.3969/j.issn.0258-2724.20220741
Citation: ZHANG Min, CAI Zhenyu, BAO Shanshan. Fault Diagnosis of Rolling Bearing Based on EEMD-Hilbert and FWA-SVM[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639, 662. doi: 10.3969/j.issn.0258-2724.20170435

基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法

doi: 10.3969/j.issn.0258-2724.20170435
基金项目: 中央高校基本科研业务费专项资金资助项目(2682016CX031)、国家自然科学基金项目(51675450)
详细信息
    作者简介:

    张敏(1986—),女,博士,讲师,研究生导师,研究方向为智能故障诊断,E-mail:zhmzhangmin16@163.com

  • 中图分类号: TH17

Fault Diagnosis of Rolling Bearing Based on EEMD-Hilbert and FWA-SVM

  • 摘要: 为有效提取非平稳特性的滚动轴承振动信号特征,提高故障诊断效率,提出一种采用集合经验模态分解(empiricalmode decomposition,EEMD)、Hilbert变换的特征提取方法,并利用烟花算法优化支持向量机(support vector machine,SVM)分类参数的滚动轴承故障诊断方法. 通过EEMD方法将目标信号分解成若干个模态函数,采取Hilbert变换获取模态函数的瞬时频率,并对模态函数及其瞬时频率进行统计特征提取,从而实现特征的有效降维. 结果表明:信号经过EEMD-Hilbert处理后特征能有效提取,将训练集和测试集各600组数据代入烟花算法优化SVM模型得到测试集正确率为99.63%;比传统的遗传算法和粒子群算法优化模型分别提高0.4%和0.2%左右;同时收敛时间更短,验证了该算法模型的可行性与有效性.

     

  • 磁悬浮技术具有无摩擦、微振动、长寿命及高精度等优点,被广泛地应用于高速机械领域. 磁轴承作为核心部件,一般与高速旋转电机配合用于高速旋转机械,如磁悬浮飞轮、磁悬浮控制力矩陀螺及磁悬浮电机等[1-3]. 对于直线运动,通常采用能够实现悬浮及导向功能的电磁铁与直线电机的组合,如磁浮列车、磁浮电梯等. 目前为止,世界很多国家已经对磁浮列车技术研究了较长时间,而且部分实现了商业运行,如中国、德国、日本、韩国等[4-6]. 磁浮列车由电磁铁与轨道功能件之间产生的电磁力支撑,从而实现无接触运行. 电磁铁为悬浮系统的核心执行部件,其电磁力特性决定了列车的承载能力,并与控制器、传感器相互配合实现列车的稳定悬浮. 尤其对于高速运行的磁浮列车,运行载荷更加复杂、苛刻,对承载能力及稳定性要求更高. 因此,电磁力特性分析作为基础研究,对悬浮系统的设计及优化起至关重要作用[7-9].

    目前,电磁力建模分析方法主要包含等效磁路法(EMC)及有限元法(FEM),其中,FEM计算精度较高,但效率较低,很难与控制模型联合用于分析系统实时特性. EMC计算速度较高,能够与控制模型联合用于系统实时动态特性分析,但其计算精度较低. 因此,在传统EMC模型中通常会考虑加入补偿系数,通过调整系数校正电磁力结果,使其与FEM结果接近[10-11]. 然而,传统EMC模型仅考虑线性工作区,导磁材料采用恒定的相对磁导率,忽略磁饱和影响,甚至忽略导磁材料磁阻. 这样会导致EMC模型结果在小电流区间内较准确,而在大电流区间就会出现较大偏差[12-13]. 本文在搭建高速磁浮悬浮电磁铁EMC模型时,考虑了导磁材料的磁阻及其非线性. 通过导磁材料B-HB为磁感应强度;H为磁场强度)曲线的拟合及引入,求解电磁力的准确性大幅度提高,适用范围增加.

    高速磁浮列车的悬浮电磁铁共有12个磁极,极性为NS交替,相邻磁极之间通过磁轭连接,磁场经过长定子铁芯形成回路,磁极与长定子之间的磁场产生电磁吸力,实现悬浮功能. 12个磁极分为左、右两组,分别由两个悬浮控制器单独控制,从而形成两个控制回路,每个回路对应两个间隙传感器. 传感器实时监测电磁铁与长定子之间的间隙,并反馈给悬浮控制器,经过控制策略计算,悬浮控制器输出相应电压给悬浮电磁铁,实现动态稳定悬浮.

    悬浮电磁铁与长定子的物理模型如图1所示. 其中电磁铁分为左、右两个回路单独控制,为简化计算模型,仅对半个电磁铁进行建模,并忽略两个回路间磁场的影响. 搭建的等效磁路模型如图2所示,磁路中包含了气隙磁阻、漏磁磁阻及导磁材料磁阻. 图中:Raj为磁极与长定子间的气隙磁阻;Rsi为长定子铁芯磁阻;Rei为磁极铁芯及磁轭磁阻;Rli为相邻磁极之间的漏磁磁阻;ϕajϕsiϕeiϕli分别为磁阻RajRsiReiRli对应的磁通;ϕpj 为磁极磁通;θj为磁极磁动势nIn为磁极匝数,I为控制回路电流;i=1,2,…,5,j=1,2,…,6.

    图  1  悬浮电磁铁及长定子模型
    Figure  1.  Model of maglev electromagnet and long stator
    图  2  半悬浮电磁铁等效磁路
    Figure  2.  EMC of half-maglev magnet

    根据建模需求,定义磁通、磁动势向量为

    {ϕ=(ϕ1,ϕl1,ϕ2,ϕl2,,ϕ5,ϕl5)T,ϕs=(ϕ1,ϕ2,,ϕ5)T,ϕa=(ϕ1,ϕ1+ϕ2,,ϕ4+ϕ5,ϕ5)T,ϕe=(ϕ1+ϕl1,ϕ2+ϕl2,,ϕ5+ϕl5)T,ϕp=(ϕ1+ϕl1,ϕ1+ϕl1+ϕ2+ϕl2,,ϕ4+ϕl4+ϕ5+ϕl5,ϕ5+ϕl5)T,θ=(θ1,θ2,,θ6)T. (1)

    磁极磁通向量ϕp与磁通向量ϕ的转换关系为

    ϕp =Tϕ

    式中:

    T=[11111111111111111111].

    在等效磁路中,根据基尔霍夫电压定律,建立关于磁通的方程组,如式(3).

    {Ra(j1)ϕa(j1)+Rsiϕsi+Rajϕaj+Reiϕei=θj1+θj,Rliϕli+Reiϕei=θj1+θj, (3)

    式中:j=2,3,,6.

    将式(1)表达为矩阵及向量形式为

    Aϕ=TTθ=TTnI (4)

    式中:向量n=(n, n, n, n, n, nTA为磁阻矩阵,AR10×10

    A=[Ra1+Ra2+Rs1+Re1Re1Ra200Re1Rl1+Re1000Ra20Ra2+Ra3+Rs2+Re2Re2Ra300Re2Rl2+Re20].

    1) 磁极与长定子间气隙磁阻

    受磁极直线发电机(linear generator, LIG)槽与长定子齿槽结构的影响,磁极与长定子之间的气隙磁通分布较为复杂,如图3所示. 因此,将气隙磁通等效分为主磁通、槽磁通及LIG磁通,分别对应3种磁阻.

    图  3  气隙磁场分布
    Figure  3.  Magnetic field distribution of air gap

    气隙磁阻为3种磁阻并联,即

    1Raj=1Ra,mj+1Ra,nj+1Ra,Lj, (5)

    式中:Ra,mj为主磁通对应的磁阻;Ra,nj为槽磁通对应的磁阻;Ra,Lj为LIG磁通对应的磁阻.

    每种磁阻可由式(6)计算.

    Ra,oj=sj+hojμ0Aa,oj,o[m,n,L] (6)

    式中:sj为磁极与长定子齿之间的间隙;μ0为空气磁导率;Aa,oj为相应气隙面积;hoj为额外气隙长度;m、n、L分别对应主磁通、槽磁通和LIG磁通.

    2) 相邻磁极间漏磁磁阻

    磁极磁通大部分经过长定子回到相邻磁极,小部分未经过长定子而直接回到相邻磁极,该部分磁通为相邻磁极之间的漏磁,对应的磁阻称为漏磁磁阻,可由式(7)计算.

    Rli=hliμ0Ali (7)

    式中:Ali为等效气隙面积;hli为相邻磁极间的等效气隙长度.

    3) 导磁材料磁阻

    对于长定子铁芯、磁极铁芯及磁轭的磁阻,采用分段方式进行求解,且尽可能保证每段的截面积相同. 具体分段如图4所示,其中,磁极及磁轭共分为5段(1~5),长定子分为3段(6~8). 该部分磁阻计算时考虑导磁材料的非线性.

    图  4  铁芯的分段
    Figure  4.  Iron core sections

    磁极铁芯及磁轭磁阻为

    Rei=5k=1lei,kμ0μr(ϕei,k)Aei,k (8)

    长定子铁芯磁阻为

    Rsi=8k=6lsi,kμ0μr(ϕsi,k)Asi,k, (9)

    式(8)、(9)中:lei,k, lsi,k分别为悬浮电磁铁侧、长定子侧每段铁芯的长度;Aei,k, Asi,k分别为悬浮电磁铁侧、长定子侧每段铁芯的截面积;μr为每段铁芯的相对磁导率;ϕsi,k为第i个磁回路中第k段长定子内的磁通量;ϕei,k为第i个回路中第k段磁极铁芯或磁轭内的磁通量.

    为在EMC模型中引入导磁材料的非线性,不再将μr简单地设置为恒定值,而是根据每段铁芯的磁通进行计算. 磁极铁芯、磁轭及长定子铁芯均采用硅钢片,牌号为M530-50A,导磁材料的非线性可通过B-H曲线体现,如图5所示.

    图  5  铁芯B-H曲线- M530-50A
    Figure  5.  B-H curve of iron core-M530-50A

    根据文献[14],B-H曲线可采用式(10)函数进行拟合.

    H=α1B+α2Bα3, (10)

    式中:α1α2α3为拟合函数自变量B的系数,可通过对图5B-H曲线的拟合确定.

    长定子铁芯的相对磁导率可表示为

    μr1=Bμ0H=1μ0(α1+α2Bα31). (11)

    根据磁密、面积及磁通的关系,式(11)可表达为

    μr1=1μ0(α1+α2(ϕsiAsi,k)α31). (12)

    同理可求解磁极铁芯及磁轭的相对磁导率为

    μr2=1μ0(α1+α2(ϕeiAei,k)α31). (13)

    将式(12)、(13)代入式(8)、(9)求解磁极铁芯、磁轭及长定子铁芯磁阻. 通过式(5)~(9)可知,磁阻矩阵A与间隙s及磁通ϕ相关,因此,将其记为As,ϕ).

    悬浮电磁铁分为两个控制回路,分别由一个控制器进行供电. 控制器的输出为电压,根据控制回路的负载特性转变为相应的负载电流. 在进行电磁力模型与控制模型联合分析时,需要搭建电磁铁的电路模型,其功能是将控制模型的输入电压转变为负载电流,再结合EMC模型计算电磁力. 与EMC模型类似,仅搭建一个回路的模型,6个磁极串联实际可等效为6个电阻与6个电感的串联,如图6所示. 图中:RMj为单个磁极电阻;LMj为单个磁极电感;ULj为单个磁极电感电压;UM为单个控制回路的输入电压.

    图  6  悬浮电磁铁控制回路
    Figure  6.  Control loop of maglev electromagnet

    根据电路模型,单个控制回路的输入电压为

    UM=RMI+6j=1ULj=RMI+nTϕp, (14)

    式中:RM为单个控制回路的总电阻.

    整理式(14),控制回路电流可表达为

    I=(UMnTϕp)/RM. (15)

    式(4)给出了磁通与电流关系,式(15)给出了磁通、电流与电压关系. 将式(15)代入式(4),可得磁通与电压的关系为

    A(s,ϕ)ϕ=TTn(UMnTϕp)/RM. (16)

    根据磁通关系ϕp=Tϕ,式(16)整理为

    TTnnTTϕ = TTnUMRMA(s,ϕ)ϕ. (17)

    经过计算发现,矩阵TTnnTT为奇异矩阵,常微分式(17)很难进行求解. 因此,为便于求解方程,采用中间变量替换原变量.

    根据磁通关系ϕp=Tϕ,将式(16)整理成变量为ϕp的方程,如式(18)

    A(s,ϕ)T1ϕp=TTn(UMnTϕp)/RM. (18)

    进一步整理为

    nTϕp=nTTA1(s,ϕ)TTn(UMnTϕp)/RM. (19)

    将6个磁极的磁通之和β作为中间变量,则β可表示为

    β=6j=1ϕpj. (20)

    将式(20)代入式(19),得到关于β的常微分方程为

    nβ=nTTA1(s,ϕ)TTn(UMnβ)/RM, (21)

    式中:nTTA−1(s,ϕ)TTn不再是一个矩阵或向量,而是一个关于sϕ的变量,记为1/M (s,ϕ).

    对式(21)进行整理得

    ˙β=UM/nRMM(s,ϕ). (22)

    依据式(15)、(22),可得Iβ间的关系为

    I=nM(s,ϕ)β. (23)

    依据式(19)、(22)及磁通关系ϕp=Tϕ,得到ϕβ间的关系为

    ϕ=A1(s,ϕ)TTnM(s,ϕ)nβ. (24)

    通过式(22)~(24)计算出悬浮电磁铁电流以及电磁力求解所需的磁通.

    根据式(5),计算各部分气隙的磁通为

    ϕa,oj=ϕajRajRa,oj. (25)

    基于虚功原理,各部分气隙对应的电磁力为

    Fmag,oj=ϕ2a,oj2μ0Aa,oj. (26)

    单个磁极电磁力为式(26)中各部分电磁力之和,即

    Fmag,j=Fmag,mj+Fmag,nj+Fmag,Lj.

    最后,求解半个悬浮电磁铁的电磁力为

    Fmag=6j=1Fmag,j.

    根据电磁力解析过程,EMC模型可简化为图7所示的结构框图,输入为电压及间隙,输出为电流及电磁力. 首先进行磁阻计算,并组建磁阻矩阵,而导磁材料磁阻的计算需要将磁通作为输入. 采用磁阻矩阵A进行电流及磁通计算,磁通需通过常微分方程及代数方程求解,磁通求解结果一方面用于电磁力计算,一方面反馈给导磁材料磁阻计算.

    图  7  电磁力模型框图
    Figure  7.  Magnetic force model

    根据悬浮电磁铁及长定子的尺寸及参数(如表1所示),对本文EMC模型进行量化. 此外,将导磁材料的相对磁导率设为恒定值,搭建基于线性导磁材料的传统EMC模型. 对两个模型电磁力的计算结果进行对比分析,如图8所示.

    表  1  悬浮电磁铁及长定子参数
    Table  1.  Parameters of maglev electromagnet and long stator
    项点取值项点取值
    定子极距/mm258.0铁芯厚度/mm170.0
    电磁铁极距/mm266.5磁极匝数300
    定子齿宽度/mm43.0额定磁间隙/mm12.5
    定子槽宽度/mm43.0恒定相对磁导率7 000
    下载: 导出CSV 
    | 显示表格
    图  8  线性与非线性材料EMC电磁力
    Figure  8.  Electromagnetic forces of EMC models with linear and nonlinear materials

    磁间隙为12.5 mm,电流在0~35 A内,两个模型的电磁力结果非常接近;当电流超过35 A时,随着电流增加,计算结果偏差增大. 原因是实际工作状态下,随着电流增大,导磁部件的磁密增大;当达到材料饱和磁密时,磁密随电流的增加率大幅降低,电磁力也相应地出现饱和现象,而传统EMC模型并未考虑材料的磁饱和. 因此,传统EMC模型适用于小电流区间,一般应用在工作点附近的线性区间20~30 A. 而大电流区间与实际工作情况不符,例如在故障、起浮、降落等特殊工况时,模型精度大幅降低,无法用于电磁力计算及系统特性分析.

    为验证本文提出的EMC模型准确性,搭建了悬浮电磁铁与长定子FEM模型,如图9所示,两者电磁力的计算结果如图10所示. 磁间隙12.5 mm与16.0 mm,电流0~80 A内,两者电磁力的计算结果具备非常高的一致性,均存在饱和现象;磁间隙12.5 mm,电流50 A时,电磁力偏差最大,EMC计算结果为115 kN,FEM计算结果为110 kN,偏差仅为4.5%,这表明了基于非线性材料的EMC模型具有较高的准确性.

    图  9  悬浮电磁铁及长定子有限元模型
    Figure  9.  FEM model of maglev electromagnet and long stator
    图  10  EMC与FEM电磁力结果
    Figure  10.  Electromagnetic force results of EMC and FEM

    针对高速磁浮电磁铁特性研究,搭建了地面试验平台,对悬浮电磁铁的静态电磁力进行测试,如图11所示. 试验台通过液压系统调整长定子与悬浮电磁铁的间隙;采用两路电源供电,但受最大输出电流限制,仅对0~50 A电流进行测试,步长为5 A;通过力传感器检测电磁铁与长定子间的电磁力. 磁间隙12.5 mm下电磁力的测试结果与EMC及FEM的计算结果对比如图12所示.

    图  11  悬浮电磁铁静态电磁力测试
    Figure  11.  Static electromagnetic force test of maglev electromagnet
    图  12  电磁力计算及测试结果
    Figure  12.  Electromagnetic force calculation and test results

    额定工况下,悬浮电磁铁的工作点:磁间隙为12.5 mm,电流为25 A,电磁力约为46 kN. 在工作点处,EMC、FEM及试验测试的电磁力结果几乎相同,在其他电流值下,电磁力结果偏差也极小,从而进一步验证了本文EMC模型以及所搭建FEM模型的准确性.

    本文基于非线性材料搭建了高速磁浮悬浮电磁铁的磁路、电路及磁力模型,将计算结果与传统EMC模型进行对比分析,并通过有限元及试验验证,通过对模型研究分析,得到以下结论:

    1) 搭建悬浮电磁铁EMC模型时,采用了非线性导磁材料,通过引入B-H曲线的拟合函数,将导磁材料的非线性及饱和特性体现在模型中.

    2) 无论小电流区,还是大电流区,本文EMC模型求解的电磁力均与实际情况接近,相比传统EMC模型,结果更加准确,适用范围更广.

    3) 本文EMC模型能够快速、准确地求解电磁力,且通过电路模型实现与控制模型的良好匹配,因此,可通过联合仿真对悬浮系统动态特性进行深入分析,为悬浮系统设计及参数优化提供了依据.

  • 图 1  故障诊断流程

    Figure 1.  Flowchart for troubleshooting

    图 3  两种方法首个IMF

    Figure 3.  Two methods for the first IMF chart

    图 4  3种算法SVM参数迭代对比

    Figure 4.  Comparison of SVM parameters for the three algorithms

    图 5  3种分类结果对比

    Figure 5.  Comparison of the three classification results

    表  1  轴承故障样本

    Table  1.   Bearing failure samples

    轴承状态故障点直径/mm训练集测试集
    正常6060
    内圈故障0.1786060
    滚动体故障0.1786060
    外圈故障0.1786060
    内圈故障0.3566060
    滚动体故障0.3566060
    外圈故障0.3566060
    内圈故障0.5336060
    滚动体故障0.5336060
    外圈故障0.5336060
    下载: 导出CSV

    表  2  3种分类结果

    Table  2.   Classification results for the three methods

    模型迭代时间/s正确率/%
    EEMD_H模型282.999.43
    EEMD模型149.894.17
    EMD_H模型304.395.10
    下载: 导出CSV

    表  3  FWA、PSO、GA对SVM参数寻优

    Table  3.   FWA,PSO,and GA for SVM parameter optimisation

    算法Cσ正确率/%
    PSO38.129.3598.67
    FWA35.396.8899.00
    GA57.8623.9798.67
    下载: 导出CSV

    表  4  3种分类结果

    Table  4.   Classification results for the three algorithms

    模型迭代时间/s正确率/%
    FWA14.499.63
    GA114.399.20
    PSO282.999.43
    下载: 导出CSV
  • TANDON N, CHOUDHURY A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings[J]. Tribology International, 1999, 32(8): 469-480.
    于德介, 程军圣, 杨宇. 机械故障诊断的Hilbert-Huang变换方法[M]. 北京: 科学出版社, 2006: 4-12
    HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1998, 454: 903-995.
    黄建,胡晓光,巩玉楠. 基于经验模态分解的高压短路机械故障诊断方法[J]. 中国电机工程学报,2011,31(12): 108-113.

    HUANG Jian, HU Xiaoguang, GONG Yumin. Model fault diagnosis method of high voltage short circuit based on empirical mode decomposition[J]. Proceeding of the CSEE, 2011, 31(12): 108-113.
    时培明,李庚,韩冬颖. 基于改进 EMD的旋转机械耦合故障诊断方法研究[J]. 中国机械工程,2013,24(17): 2367-2372.

    SHI Peiming, LI Geng, HAN Dongying. Study on coupling fault diagnosis method of rotating machinery based on improved EMD[J]. China Mechanical Engineering, 2013, 24(17): 2367-2372.
    WU Z, HUANG N. Ensemble empirical mode decomposition:a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
    秦娜,金炜东,黄进,等. 基于EEMD样本熵的高速列车转向架故障特征提取[J]. 西南交通大学学报,2014,49(1): 27-32.

    QIN Na, JIN Weidong, HUANG Jin, et al. Fault feature extraction of high-speed train bogies based on eemd sample entropy[J]. Journal of Southwest Jiaotong University, 2014, 49(1): 27-32.
    AlVAR M, SANCHEZ A, ARRANZ A. Fast background subtraction using static and dynamic gates[J]. Artificial Intelligence Review, 2014, 41(1): 113-128.
    何青,褚东亮,毛新华,等. 基于EEMD和 MFFOA-SVM滚动轴承故障诊断[J]. 中国机械工程,2016,27(9): 1191-1197.

    HE Qing, ZHU Dongliang, MAO Xinhua, et al. Fault diagnosis of rolling bearing based on EEMD and MFFOA-SVM[J]. China Mechanical Engineering, 2016, 27(9): 1191-1197.
    TAN Y, ZHU Y. Fireworks algorithm for optimization [C]//International Conference in Swarm Intelligence. Berlin: Springer, 2010: 355-364
    顾军华,赵燕,董瑶. 基于FWA-SVM的室内无线定位研究[J]. 河北工业大学学报,2016,45(6): 35-40.

    GU Junhua, ZHAO Yan, DONG Yao. Study on indoor wireless location based on FWA-SVM[J]. Journal of Hebei University of Technology, 2016, 45(6): 35-40.
    高宏宾,侯杰,李瑞光. 基于核主成分分析的数据流降维研究[J]. 计算机工程与应用,2013,49(11): 105-109.

    GAO Hongbin, HOU Jie, LI Ruiguang. Research on dimension reduction of data flow based on kernel principal component analysis[J]. Computer Engineering and Applications, 2013, 49(11): 105-109.
    陈维荣,关佩,邹月娴. 基于SVM的交通事件检测技术[J]. 西南交通大学学报,2011,46(1): 63-67.

    CHEN Weirong, GUAN Pei, ZOU Yuexian. A traffic event detection technology based on SVM[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 63-67.
    于世飞,齐丙娟,谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报,2011,40(1): 2-10.

    YU Shifei, QI Bingjuan, TAN Hongyan. Study on support vector machine theory and algorithm[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10.
    叶林,刘鹏. 基于经验模态分解和支持向量机的短期风电功率组合预测模型[J]. 中国电机工程学报,2011,31(31): 102-108.

    YE Lin, LIU Peng. Study on short-term wind power combination forecasting model based on empirical mode decomposition and support vector machine[J]. Proceeding of the CSEE, 2011, 31(31): 102-108.
    谭营,郑少秋. 烟花算法研究进展[J]. 智能系统学报,2014(5): 515-528.

    TAN Ying, ZHENG Shaoqiu. Research progress of fireworks algorithm[J]. Journal of Intelligent Systems, 2014(5): 515-528.
    张乾, 基于振动信号的轴承状态监测和故障诊断方法研究[D]. 长沙: 中南大学, 2012
    张敏,程文明,刘娟. 复杂生产过程小故障诊断与分类方法研究[J]. 西南交通大学学报,2014,49(5): 842-847.

    ZHANG Min, CHENG Wenming, LIU Juan. Study on fault diagnosis and classification of complex production processes[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 842-847.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  671
  • HTML全文浏览量:  236
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-14
  • 修回日期:  2017-10-16
  • 网络出版日期:  2019-02-22
  • 刊出日期:  2019-06-01

目录

/

返回文章
返回