• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

EMS型中低速磁浮列车悬浮架技术研究综述

马卫华 胡俊雄 李铁 罗世辉 刘树洪

马卫华, 胡俊雄, 李铁, 罗世辉, 刘树洪. EMS型中低速磁浮列车悬浮架技术研究综述[J]. 西南交通大学学报, 2023, 58(4): 720-733. doi: 10.3969/j.issn.0258-2724.20210971
引用本文: 马卫华, 胡俊雄, 李铁, 罗世辉, 刘树洪. EMS型中低速磁浮列车悬浮架技术研究综述[J]. 西南交通大学学报, 2023, 58(4): 720-733. doi: 10.3969/j.issn.0258-2724.20210971
MA Weihua, HU Junxiong, LI Tie, LUO Shihui, LIU Shuhong. Technologies Research Review of Electro-Magnetic Suspension Medium−Low-Speed Maglev Train Levitation Frame[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 720-733. doi: 10.3969/j.issn.0258-2724.20210971
Citation: MA Weihua, HU Junxiong, LI Tie, LUO Shihui, LIU Shuhong. Technologies Research Review of Electro-Magnetic Suspension Medium−Low-Speed Maglev Train Levitation Frame[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 720-733. doi: 10.3969/j.issn.0258-2724.20210971

EMS型中低速磁浮列车悬浮架技术研究综述

doi: 10.3969/j.issn.0258-2724.20210971
基金项目: 国家自然科学基金(51875483,52102442);四川省科技计划(2021YJ0002)
详细信息
    作者简介:

    马卫华(1979—),男,研究员,博士,研究方向为车辆系统动力学,E-mail:mwh@swjtu.edu.cn

  • 中图分类号: U266.4

Technologies Research Review of Electro-Magnetic Suspension Medium−Low-Speed Maglev Train Levitation Frame

  • 摘要:

    悬浮架是承载EMS(electro-magnetic suspension)型中低速磁浮列车运行的关键子系统,影响列车的悬浮稳定性、舒适性和安全性,需要对其进行深入研究. 围绕国内外EMS型中低速磁浮列车应用案例,介绍了(悬挂)端置式悬浮架、(悬挂)中置式悬浮架的技术方案和特征,总结了主要技术指标. 结合悬浮架技术研究、发展现状,讨论了磁轨作用关系、运动解耦能力、动力学性能、结构强度以及悬浮冗余设计五大研究方向,通过对研究内容梳理和总结,归纳了现有前沿科学问题和工程技术挑战:一是轨距亟须统一;二是动态磁轨关系研究欠缺;三是悬浮架横向动力学有待研究;四是悬浮架疲劳强度分析及试验不足;五是悬浮架机械结构冗余设计方案较少.

     

  • 图 1  (悬挂)端置式悬浮架

    Figure 1.  (Suspension) end-set levitation frame

    图 2  (悬挂)中置式悬浮架

    Figure 2.  (Suspension) mid-set levitation frame

    图 3  悬浮架技术研究内容

    Figure 3.  Technical research contents of levitation frame

    图 4  二维磁轨关系计算

    Figure 4.  Calculation of two-dimensional magnetic-track relationship

    图 5  悬浮架解耦能力分析

    Figure 5.  Decoupling capacity analysis of levitation frame

    图 6  动力学模型发展历程

    Figure 6.  Development history of dynamic models

    图 7  迫导向机构工作原理

    Figure 7.  Working principle of forced steering mechanism

    图 8  悬浮架疲劳试验台

    Figure 8.  Levitation frame fatigue test bench

    图 9  悬浮控制器冗余设计拓扑结构

    Figure 9.  Levitation controller redundant design topology

    表  1  EMS型中低速磁浮列车主要技术指标

    Table  1.   Main technical indexes of EMS medium-low speed maglev train

    项目轨距/mm最高运行速度/
    (km·h−1
    最大爬坡
    能力/‰
    最小曲线
    半径
    /m
    编组单节车悬
    浮架数量
    列车全长/m
    TKL磁浮170010070503543.3
    仁川磁浮185010070502425
    长沙磁浮186014070503548.3
    北京磁浮200012070506589.6
    (悬挂)中置式磁浮190016070503548.2
    下载: 导出CSV

    表  2  (悬挂)端置式悬浮架特征尺寸

    Table  2.   Technical parameters of levitation frame with end-set airspring

    符号定义尺寸/mm
    Lm悬浮模块长度2720
    Lg轨距1860
    Larb片梁长度1030
    l吊杆距片梁安装座距离226
    Lpdl吊杆长度200
    X悬浮控制单元距防侧滚梁距离273
    下载: 导出CSV

    表  3  悬浮架主要结构材料及工艺

    Table  3.   Main structural materials and process of levitation frame

    部件材料密度/(kg·m−3质量/kg成型工艺
    纵梁60612800110.39挤压+机加工
    托臂ZL204A281032.36铸造+机加工
    上托臂连接件ZL204A281029.42铸造+机加工
    下托臂连接件ZL204A281025.95铸造+机加工
    滑台ZL204A281026.10铸造+机加工
    牵引座Q23578504.57拼焊+机加工
    片梁Q235785016.96激光切割+机加工
    吊杆Q23578501.00机加工
    下载: 导出CSV
  • [1] 徐飞,罗世辉,邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报,2019,41(3): 40-49.

    XU Fei, LUO Shihui, DENG Zigang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49.
    [2] LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842
    [3] YAN L G. Development and application of the maglev transportation system[J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 92-99. doi: 10.1109/TASC.2008.922239
    [4] 龚俊虎,谢海林,鄢巨平,等. 全速度谱系磁浮交通的技术发展与应用前景[J]. 城市轨道交通研究,2020,23(9): 61-64,69.

    GONG Junhu, XIE Hailin, YAN Juping, et al. Development and application prospect of full-speed spectrum maglev transportation technology[J]. Urban Mass Transit, 2020, 23(9): 61-64,69.
    [5] THORNTON R D. Efficient and affordable maglev opportunities in the United States[J]. Proceedings of the IEEE, 2009, 97(11): 1901-1921. doi: 10.1109/JPROC.2009.2030251
    [6] TANDAN G K, SEN P K, SAHU G, et al. A review on development and analysis of maglev train[J]. International Journal of Research in Advent Technology, 2015, 3(12): 14-17.
    [7] GOU J S. Development status and global competition trends analysis of maglev transportation technology based on patent data[J]. Urban Rail Transit, 2018, 4(3): 117-129. doi: 10.1007/s40864-018-0087-3
    [8] 张志洲,龙志强. 日本东部丘陵线磁悬浮系统技术综述[J]. 国外铁道车辆,2005,42(6): 7-11.

    ZHANG Zhizhou, LONG Zhiqiang. Technological survey of the maglev system of the east hillside line in Japan[J]. Foreign Rolling Stock, 2005, 42(6): 7-11.
    [9] 刘卫东. 日本Linimo磁浮线的技术特点和运行情况[J]. 城市轨道交通研究,2014,17(4): 133-136.

    LIU Weidong. Technical characters and operation of the low-speed maglev line“linimo”in Japan[J]. Urban Mass Transit, 2014, 17(4): 133-136.
    [10] HAN H S, KIM D S. Magnetic Levitation[M]. Dordrecht: Springer Netherlands, 2016.
    [11] 佟来生. 长沙磁浮快线列车概述[J]. 电力机车与城轨车辆,2020,43(4): 1-5.

    TONG Laisheng. Summary of Changsha maglev express train[J]. Electric Locomotives & Mass Transit Vehicles, 2020, 43(4): 1-5.
    [12] 北京磁浮交通发展有限公司. 北京磁浮技术参数[DB/OL]. (2019-06-08). https://www.maglev.cn/intro/30.html
    [13] 马卫华,罗世辉,张敏,等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报,2021,21(1): 199-216.

    MA Weihua, LUO Shihui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216.
    [14] 陈贵荣,龙志强. 日本低速磁悬浮列车发展[J]. 国外铁道车辆,2008,45(1): 1-3.

    CHEN Guirong, LONG Zhiqiang. Development of low speed maglev train in Japan[J]. Foreign Rolling Stock, 2008, 45(1): 1-3.
    [15] ZHANG M, LUO S H, GAO C, et al. Research on the mechanism of a newly developed levitation frame with mid-set air spring[J]. Vehicle System Dynamics, 2018, 56(12): 1797-1816. doi: 10.1080/00423114.2018.1435892
    [16] 翟婉明,赵春发. 磁浮车辆/轨道系统动力学( Ⅰ ):磁/轨相互作用及稳定性[J]. 机械工程学报,2005,41(7): 1-10. doi: 10.3901/JME.2005.07.001

    ZHAI Wanming, ZHAO Chunfa. Dynamics of maglev vehicle/guideway systems(I): magnet/rail interaction and system stability[J]. Chinese Journal of Mechanical Engineering, 2005, 41(7): 1-10. doi: 10.3901/JME.2005.07.001
    [17] 时瑾,魏庆朝. 常导磁悬浮铁路磁轨关系研究[J]. 北方交通大学学报,2004,28(4): 41-44.

    SHI Jin, WEI Qingchao. Studies on the magnet/rail relationship of electromagnetic suspension transport system[J]. Journal of Northern Jiaotong University, 2004, 28(4): 41-44.
    [18] GOTTZEIN E, LANGE B. Magnetic suspension control systems for the MBB high speed train[J]. Automatica, 1975, 11(3): 271-284. doi: 10.1016/0005-1098(75)90043-6
    [19] SINHA P K. Magnetic suspension for low-speed vehicles[J]. Journal of Dynamic Systems, Measurement, and Control, 1978, 100(4): 333-342. doi: 10.1115/1.3426387
    [20] BRZEZINA W, LANGERHOLC J. Lift and side forces on rectangular pole pieces in two dimensions[J]. Journal of Applied Physics, 1974, 45(4): 1869-1872. doi: 10.1063/1.1663505
    [21] 赵春发,翟婉明. 低速磁浮车辆导向方式及其横向动态特性[J]. 中国铁道科学,2005,26(6): 28-32.

    ZHAO Chunfa, ZHAI Wanming. Guidance mode and dynamic lateral characteristics of low-speed maglev vehicle[J]. China Railway Science, 2005, 26(6): 28-32.
    [22] 谢云德,常文森. 电磁型磁浮列车单铁力的计算及运动稳定性和可控性研究[J]. 铁道学报,1995,17(1): 41-48.

    XIE Yunde, CHANG Wensen. Calculation of the force with single magnet and research of its suspension stability and controllablity on electromagneti csuspension vehicles systems[J]. Journal of the China Railway Society, 1995, 17(1): 41-48.
    [23] YAMAMURA S, ITO T. Analysis of speed characteristics of attracting magnet for magnetic levitation of vehicles[J]. IEEE Transactions on Magnetics, 1975, 11(5): 1504-1507. doi: 10.1109/TMAG.1975.1058850
    [24] ONUKI T, WAKAO S, YOSHIZAWA T. Eddy current computations in moving conductors by the hybrid FE-BE method[J]. IEEE Transactions on Magnetics, 1995, 31(3): 1436-1439. doi: 10.1109/20.376298
    [25] ONUKI T, NAKATSU T, WAKAO S, et al. Magnetic field analysis of nonlinear system considering both motion and voltage equations[J]. IEEE Transactions on Magnetics, 1997, 33(2): 2097-2100. doi: 10.1109/20.582734
    [26] 李云钢,常文森. 模块结构EMS型磁浮列车的导向控制研究[J]. 国防科技大学学报,1997,19(3): 114-118.

    LI Yungang, CHANG Wensen. Guidance control research of module structure EMS maglev vehicle[J]. Journal of National University of Defense Technology, 1997, 19(3): 114-118.
    [27] ZHAO C F, ZHAI W M. D603 dynamic characteristics of a single magnet suspension system applied to a low-speed EMS maglev vehicle[C]//STECH 2003: Proceeding of the International Symposium on Speed-up and Service Technology for Railway and Maglev System. Tokyo: The Japan Society of Mechanical Engineers, 2003: 472-477.
    [28] 洪华杰,李杰. 磁浮系统模型中用弹簧阻尼器替代控制器的等效性分析[J]. 国防科技大学学报,2005,27(4): 101-105.

    HONG Huajie, LI Jie. The analysis of the equivalence of substituting the controllers with the spring-dampers in maglev system model[J]. Journal of National University of Defense Technology, 2005, 27(4): 101-105.
    [29] 梁鑫,罗世辉,马卫华. 常导磁浮列车动态磁轨关系研究[J]. 铁道学报,2013,35(9): 39-45.

    LIANG Xin, LUO Shihui, MA Weihua. Study on dynamic magnet-track relationship of maglev vehicles[J]. Journal of the China Railway Society, 2013, 35(9): 39-45.
    [30] 梁鑫,马卫华. 2种磁轨关系的磁浮车桥相互作用比较分析[J]. 铁道科学与工程学报,2017,14(4): 845-851.

    LIANG Xin, MA Weihua. Comparative analysis of two kinds of magnet-track relationship of maglev vehicle and guideway interaction[J]. Journal of Railway Science and Engineering, 2017, 14(4): 845-851.
    [31] 赵志苏,尹力明,罗昆. 磁悬浮列车转向机构运动分析与设计[J]. 机车电传动,2000(6): 11-13,30.

    ZHAO Zhisu, YIN Liming, LUO Kun. Motion analysis and design for yawing mechanism of maglev vehicle[J]. Electric Drive for Locomotive, 2000(6): 11-13,30.
    [32] ZHAO Z S. Structural and kinematic analysis of EMS maglev train[M]. London: INTECH Open Access Publisher, 2012: 116-119.
    [33] HU J X, MA W H, LUO S H, et al. Decoupling capability of levitation frames for medium-low speed maglev trains[J]. International Journal of Structural Stability and Dynamics, 2021, 21(12): 2150178.1-2150178.21. doi: 10.1142/S0219455421501789
    [34] 胡俊雄,雷成,马卫华,等. 中低速磁浮列车中置式悬浮架的耦合姿态分析[J]. 铁道学报,2021,43(10): 29-35.

    HU Junxiong, LEI Cheng, MA Weihua, et al. Coupling posture analysis of mid-set levitation frame of medium and low speed maglev train[J]. Journal of the China Railway Society, 2021, 43(10): 29-35.
    [35] 张耿,李杰,李金辉. 低速磁浮列车防侧滚吊杆运动学研究[J]. 铁道学报,2012,34(4): 28-33.

    ZHANG Geng, LI Jie, LI Jinhui. Kinematics study on anti-roll boom of low-speed maglev train[J]. Journal of the China Railway Society, 2012, 34(4): 28-33.
    [36] LENG P, LI J, JIN Y X. Kinematics modeling and analysis of mid-low speed maglev vehicle with screw and product of exponential theory[J]. Symmetry, 2019, 11(10): 1201.1-1201.16. doi: 10.3390/sym11101201
    [37] 刘德生,李杰,常文森. EMS型磁浮列车模块的运动耦合研究[J]. 铁道学报,2006,28(3): 22-26.

    LIU Desheng, LI Jie, CHANG Wensen. Study on motional coupling of single EMS module[J]. Journal of the China Railway Society, 2006, 28(3): 22-26.
    [38] 蒋启龙,连级三,岳德坤. 磁浮列车模块的机械耦合分析[J]. 铁道学报,2005,27(1): 36-39.

    JIANG Qilong, LIAN Jisan, YUE Dekun. Mechanical coupling analysis of single EMS module[J]. Journal of the China Railway Society, 2005, 27(1): 36-39.
    [39] ZHANG W Q, LI J, ZHANG K, et al. Decoupling suspension controller based on magnetic flux feedback[J]. Advanced Materials Research, 2013, 709: 462-469. doi: 10.4028/www.scientific.net/AMR.709.462
    [40] HE G, LI J, CUI P. Decoupling control design for the module suspension control system in maglev train[J]. Mathematical Problems in Engineering, 2015, 2015: 865650.1-865650.15.
    [41] LENG P, LI Y J, ZHOU D F, et al. Decoupling control of maglev train based on feedback linearization[J]. IEEE Access, 2019, 7: 130352-130362. doi: 10.1109/ACCESS.2019.2940053
    [42] 翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    [43] POPP K, SCHIEHLEN W. Dynamics of magnetically levitated vehicles on flexible guideways[J]. Vehicle System Dynamics, 1975, 4(2/3): 195-199.
    [44] POPP K. Math ematical modeling and control system design of maglev vehicles[M]. Vienna: Springer, 1982.
    [45] 赵春发,翟婉明,蔡成标. 磁浮车辆/高架桥垂向耦合动力学研究[J]. 铁道学报,2001,23(5): 27-33.

    ZHAO Chunfa, ZHAI Wanming, CAI Chengbiao. Maglev vehicle/elevated-beam guideway vertical coupling dynamics[J]. Journal of the China Railway Society, 2001, 23(5): 27-33.
    [46] KORTÜM W. Introduction to system-dynamics of ground vehicles[J]. Vehicle System Dynamics, 1987, 16(S1): 1-36. doi: 10.1080/00423118708969170
    [47] ZHENG X J, WU J J, ZHOU Y H. Numerical analyses on dynamic control of five-degree-of-freedom maglev vehicle moving on flexible guideways[J]. Journal of Sound and Vibration, 2000, 235(1): 43-61. doi: 10.1006/jsvi.1999.2911
    [48] 曾佑文,王少华,张昆仑. EMS磁浮列车-轨道垂向耦合动力学研究[J]. 铁道学报,1999,21(2): 21-25. doi: 10.3321/j.issn:1001-8360.1999.02.005

    ZENG Youwen, WANG Shaohua, ZHANG Kunlun. A study of vertical coupling dynamics of EMS maglev train and guideway systems[J]. Journal of the China Railway Society, 1999, 21(2): 21-25. doi: 10.3321/j.issn:1001-8360.1999.02.005
    [49] 曾佑文,王少华,张昆仑. 磁浮列车车辆 轨道耦合振动及悬挂参数研究[J]. 西南交通大学学报,1999,34(2): 168-173.

    ZENG Youwen, WANG Shaohua, ZHANG Kunlun. A study on the vehicle guideway coupling vibration and suspension parameters of maglev train[J]. Journal of Southwest Jiaotong University, 1999, 34(2): 168-173.
    [50] ZHAI Wanming, ZHAO Chunfa, CAI Chengbiao. Dynamic simulation of the EMS maglev vehicle-guideway-controller coupling system[C]//Proceedings of the 18th international conference on magnetically levitated systems and linear drives (MAGLEV 2004). Shanghai: Railway Technical Research Institute, 2004: 567-574.
    [51] MIN D J, JUNG M R, KIM M Y, et al. Dynamic interaction analysis of maglev-guideway system based on a 3D full vehicle model[J]. International Journal of Structural Stability and Dynamics, 2017, 17(1): 1750006.1-1750006.39. doi: 10.1142/S0219455417500067
    [52] HAN J B, HAN H S, KIM S S, et al. Design and validation of a slender guideway for maglev vehicle by simulation and experiment[J]. Vehicle System Dynamics, 2016, 54(3): 370-385. doi: 10.1080/00423114.2015.1137957
    [53] HAN J B, HAN H S, LEE J M, et al. Dynamic modeling and simulation of EMS Maglev vehicle to evaluate the levitation stability and operational safety over an elastic segmented switch track[J]. Journal of Mechanical Science and Technology, 2018, 32(7): 2987-2998. doi: 10.1007/s12206-018-0602-1
    [54] HU J X, MA W H, LUO S H. Coupled dynamic analysis of low and medium speed maglev vehicle-bridge interaction using SIMPACK[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235(3): 377-389. doi: 10.1177/0954409720925676
    [55] 德米特里·波戈列洛夫,雷强,根纳季·米克希夫,等. 基于UM的磁浮列车-轨道梁耦合振动仿真程序开发[J]. 计算机辅助工程,2019,28(1): 28-35.
    [56] HOSODA Y, KAWASHIMA M, IWAYA M, et al. Curvature running test results of HSST vehicle[J]. IEEE Transactions on Magnetics, 1987, 23(5): 2344-2346. doi: 10.1109/TMAG.1987.1065314
    [57] 卜继玲,傅茂海,严隽耄,等. 常导吸引式低速磁悬浮车辆动态曲线通过性能研究[J]. 铁道学报,2001,23(1): 29-32.

    BU Jiling, FU Maohai, YAN Junmao, et al. Study on dynamic performance of the Low-speed EMS maglev car in curve negotiation[J]. Journal of the China Railway Society, 2001, 23(1): 29-32.
    [58] ZHAO C F, ZHAI W, WANG K Y. Dynamic responses of the low-speed maglev vehicle on the curved guideway[J]. Vehicle System Dynamics, 2002, 38(3): 185-210. doi: 10.1076/vesd.38.3.185.8289
    [59] 叶学艳,赵春发,翟婉明. 低速磁浮车辆动力学建模与导向机构仿真分析[J]. 交通运输工程学报,2007,7(3): 6-10.

    YE Xueyan, ZHAO Chunfa, ZHAI Wanming. Dynamics modeling of low-speed maglev vehicle system and simulation of its guidance mechanisms[J]. Journal of Traffic and Transportation Engineering, 2007, 7(3): 6-10.
    [60] YIM B H, HAN H S, LEE J K, et al. Curving performance simulation of an EMS-type maglev vehicle[J]. Vehicle System Dynamics, 2009, 47(10): 1287-1304. doi: 10.1080/00423110802632071
    [61] 杨磊,赵志苏. 磁悬浮列车转向架结构强度的有限元分析[J]. 机械,2004,31(2): 13-15,30. doi: 10.3969/j.issn.1006-0316.2004.02.005

    YANG Lei, ZHAO Zhisu. The finite element analysis on structure strength of the maglev bogie[J]. Machinery, 2004, 31(2): 13-15,30. doi: 10.3969/j.issn.1006-0316.2004.02.005
    [62] 周益,刘放,李飞,等. 运用SolidWorks和ANSYS的磁浮列车悬浮架结构有限元分析[J]. 现代制造工程,2012(8): 17-20.

    ZHOU Yi, LIU Fang, LI Fei, et al. Finite element analysis of the levitation chassis of maglev vehicle based on SolidWorks and ANSYS[J]. Modern Manufacturing Engineering, 2012(8): 17-20.
    [63] 马军,孙秦. 磁悬浮列车走行机构关键部件DFR法疲劳寿命估算[J]. 机械设计与制造,2008(6): 38-40.

    MA Jun, SUN Qin. Fatigue life estimation of the key part of the maglev running frame based on DFR method[J]. Machinery Design & Manufacture, 2008(6): 38-40.
    [64] 任治军,赵志苏. 磁悬浮列车转向架疲劳寿命功率谱预测法[J]. 机电工程技术,2006,35(1): 25-27,66,101. doi: 10.3969/j.issn.1009-9492.2006.01.010

    REN Zhijun, ZHAO Zhisu. Fatigue life prediction of maglev bogie by power spectrum method[J]. Mechanical & Electrical Engineering Technology, 2006, 35(1): 25-27,66,101. doi: 10.3969/j.issn.1009-9492.2006.01.010
    [65] 迟振华,刘放,赵兴忠,等. 基于表面外推热点应力法的悬浮架疲劳强度分析[J]. 现代制造工程,2015(10): 8-11,26. doi: 10.3969/j.issn.1671-3133.2015.10.003

    CHI Zhenhua, LIU Fang, ZHAO Xingzhong, et al. Research on fatigue analysis of levitation chassis using hot spot stress method based on surface extrapolation[J]. Modern Manufacturing Engineering, 2015(10): 8-11,26. doi: 10.3969/j.issn.1671-3133.2015.10.003
    [66] 李强,姚毓瑾,虞大联,等. 高速磁悬浮列车悬浮架结构可靠性研究[J]. 北京交通大学学报,2020,44(1): 70-76. doi: 10.11860/j.issn.1673-0291.20190019

    LI Qiang, YAO Yujin, YU Dalian, et al. Structural reliability analysis of levitation chassis of high-speed maglev[J]. Journal of Beijing Jiaotong University, 2020, 44(1): 70-76. doi: 10.11860/j.issn.1673-0291.20190019
    [67] HAN S W, WOO K J. Evaluation of dynamic fatigue life for maglev bogie frame[J]. Journal of the Korean Society for Railway, 2010, 13(1): 1-8.
    [68] HAN J W, KIM H S, BANG J S, et al. Fatigue strength evaluation of bogie frame of urban maglev train[J]. Transactions of the Korean Society of Mechanical Engineers A, 2013, 37(7): 945-951. doi: 10.3795/KSME-A.2013.37.7.945
    [69] HAN J W, KIM J D, SONG S Y. Fatigue strength evaluation of a bogie frame for urban maglev train with fatigue test on full-scale test rig[J]. Engineering Failure Analysis, 2013, 31: 412-420. doi: 10.1016/j.engfailanal.2013.01.009
    [70] 龙志强,张志洲,常文森. 考虑传感器故障的磁浮系统容错控制仿真研究[J]. 系统仿真学报,2007,19(19): 4469-4472.

    LONG Zhiqiang, ZHANG Zhizhou, CHANG Wensen. Simulation research of fault tolerant control for maglev system with sensor's faults[J]. Journal of System Simulation, 2007, 19(19): 4469-4472.
    [71] YETENDJE A, SERON M M, DE DONÁ J A, et al. Sensor fault-tolerant control of a magnetic levitation system[J]. International Journal of Robust and Nonlinear Control, 2010, 20(18): 2108-2121. doi: 10.1002/rnc.1572
    [72] SUNG H K, KIM D S, CHO H J, et al. Fault tolerant control of electromagnetic levitation system[J]. Advances in Industrial Control, 2004, 57(10): 676-689.
    [73] JANG K H, KOOK Y S, SHIN B C, et al. Redundancy performance of levitation controller for maglev vehicle EcoBee[C]//2018 21st International Conference on Electrical Machines and Systems (ICEMS). Jeju: IEEE, 2018: 898-902.
    [74] 赵志苏. 基于空气悬架系统的磁悬浮列车安全冗余研究[J]. 液压与气动,2008(1): 18-21. doi: 10.3969/j.issn.1000-4858.2008.01.007

    ZHAO Zhisu. Safety redundancy research of MAGLEV based on air suspension system[J]. Chinese Hydraulics & Pneumatics, 2008(1): 18-21. doi: 10.3969/j.issn.1000-4858.2008.01.007
    [75] 向湘林, 龙志强, 梁潇, 等. 中低速磁悬浮列车、走行部及用于提高冗余的搭接结构: CN208452798U[P]. 2019-02-01.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1570
  • HTML全文浏览量:  886
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-05-23
  • 网络出版日期:  2022-10-28
  • 刊出日期:  2022-05-26

目录

    /

    返回文章
    返回