Vortex-Induced Vibration Performance of Wide Streamlined Box Girder and Aerodynamic Countermeasure Research
-
摘要: 为了抑制宽幅流线型箱梁涡激振动,以青山长江大桥(大跨度宽幅流线型钢箱梁斜拉桥)为背景,通过1:50节段模型风洞试验,在低阻尼条件下研究了主梁的涡振性能以及不同气动措施包括风嘴、检修车轨道、导流板、抑振板和检修道栏杆对涡振性能的影响.结果表明:采用外形较锐的风嘴可改善主梁的气动性能;通过改变检修车轨道位置、轨道支架高度及在其两侧设置导流板对抑制涡振效果不明显;在防撞栏杆后按隔五封一方式布置抑振板,可以使竖向涡振振幅降低45%;高透风率的圆形截面检修道栏杆可显著改善主梁的涡振性能,使涡振振幅降低63%,并且该措施不会影响桥梁美观性、便于工程应用.通过1:27大比例尺节段模型风洞试验,对高透风率圆形截面检修道栏杆的抑振措施进行了验证,结果表明该措施可有效抑制宽幅流线型箱梁涡振.Abstract: To suppress the vortex-induced vibration (VIV) of the wide streamlined box girder, the Qingshan Yangtze River Bridge (a long-span cable-stayed bridge with a wide streamlined box girder) was taken as an example. The study of the VIV performance was carried out through a 1:50 scale section model wind tunnel test. The VIV performance of the girder was studied in a low-damping condition, as well as the effects of various countermeasures on such performance, including wind fairing, inspection vehicle rail, guide vane, vibration mitigation plate, and maintenance way railing. The test results show that a sharp wind fairing is favourable to the VIV performance of the girder. The position of the inspection vehicle rail, the height of rail supporter, and the guide vane slightly suppress the VIV response. The vibration mitigation plate, which was installed behind the anti-collision railing such that five seals off one, can reduce the vertical VIV displacement by 45%. The circular maintenance way railing and the high ventilation rate can improve the VIV of the wide streamlined box girder significantly. In particular, the displacement was reduced by 63%. The recommended railing style does not affect the aesthetic of the bridge and is convenient to apply. A 1:27 scale section model test was conducted to verify the countermeasure. The test results show that the recommended maintenance way railing can suppress the VIV of the wide streamlined box girder effectively.
-
表 1 节段模型主要试验参数
Table 1. Main test parameters of the section model
一阶模态 实桥 模型 风速比 频率
/Hz阻尼比
/%等效质量
/(kg·m-1)等效质量惯矩
/(kg·m)频率
/Hz阻尼比
/%等效质量
/(kg·m-1)等效质量惯矩
/(kg·m)对称竖弯 0.213 — 47 158 — 2.873 0.362 18.863 — 3.707 对称扭转 0.559 — — 7 777 960 7.342 0.351 — 1.244 3.807 表 2 风嘴形状对竖向涡振振幅的影响
Table 2. Effect of wind fairing on the vertical VIV displacement
工况 竖向涡振振幅最大值/mm 原断面 296.2 1 314.6 2 261.5 3 463.1 4 452.7 表 3 检修车轨道及导流板抑振措施
Table 3. Mitigation measures of inspection vehicle rail and guide vane
抑振措施 图示 工况 去掉检修车轨道 工况5:去掉检修车轨道 检修车轨道位于斜腹板 工况2:B=4.1 m, H=0.48 m
工况6:B=4.1 m, H=0.70 m
工况7:B=5.2 m, H=0.48 m
工况8:B=6.0 m, H=0.48 m
工况9:B=7.2 m, H=0.48 m检修车轨道位于底板 工况10:B=3.0 m, H=0.48 m
工况11:B=3.0 m, H=0.70 m检修车轨道安装导流板 工况12:B=4.1 m, H=0.48 m
L=2.2 m, α = 162°
工况13:B = 4.1 m, H = 0.70 m
L = 2.2 m, α = 162°表 4 检修车轨道对竖向涡振振幅的影响
Table 4. Effect of inspection vehicle rail on the vertical VIV displacement
工况 竖向涡振振幅最大值/mm 5 106.1 6 268.7 7 247.5 8 238.6 9 232.5 10 240.4 11 242.5 12 223.5 13 228.7 表 5 抑振板对竖向涡振振幅的影响
Table 5. Effect of vibration mitigation plate on the vertical VIV displacement
工况 竖向涡振振幅最大值/mm 14 235.4 15 190.9 16 178.2 17 162.3 18 194.1 表 6 大比例尺节段模型主要试验参数
Table 6. Main test parameters of the large-scale section model
参数名称 实桥 模型 等效质量/(kg·m-1) 47 158 64.688 竖弯频率/Hz 0.213 3.353 竖弯阻尼比/% — 0.370 -
LAIMA Shuijin, LI Hui, CHEN Wenli, et al. Investigation and control of vortex-induced vibration of twin box girders[J]. Journal of Fluids and Structures, 2013, 39(5):205-221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9940fea79a32ed3b3f74f7417325fc52 孙延国, 廖海黎, 李明水.基于节段模型试验的悬索桥涡振抑振措施[J].西南交通大学学报, 2012, 47(2):218-223. http://manu19.magtech.com.cn/Jweb_xnjd/CN/abstract/abstract11575.shtmlSUN Yanguo, LIAO Haili, LI Mingshui. Mitigation measures of vortex-induced vibration of suspension bridge based on section model test[J]. Journal of Southwest Jiaotong University, 2012, 47(2):218-223. http://manu19.magtech.com.cn/Jweb_xnjd/CN/abstract/abstract11575.shtml 刘君, 廖海黎, 万嘉伟, 等.检修车轨道导流板对流线型箱梁涡振的影响[J].西南交通大学学报, 2015, 50(5):789-795. doi: 10.3969/j.issn.0258-2724.2015.05.004LIU Jun, LIAO Haili, WAN Jiawei, et al. Effect of guide vane beside maintenance rail on vortex vibration of streamlined box girder[J]. Journal of Southwest Jiaotong University, 2015, 50(5):789-795. doi: 10.3969/j.issn.0258-2724.2015.05.004 王骑, 林道锦, 廖海黎, 等.分体式钢箱梁涡激振动特性及制振措施风洞试验研究[J].公路, 2013(7):294-299. doi: 10.3969/j.issn.0451-0712.2013.07.067WANG Qi, LIN Daojin, LIAO Haili, et al. Investigation on the vortex-induced vibration and aerodynamic counter measures of twin box bridge by wind tunnel tests[J]. Highway, 2013(7):294-299. doi: 10.3969/j.issn.0451-0712.2013.07.067 管青海, 李加武, 胡兆同, 等.栏杆对典型桥梁断面涡激振动的影响研究[J].振动与冲击, 2014, 33(3):150-156. doi: 10.3969/j.issn.1000-3835.2014.03.029GUAN Qinghai, LI Jiawu, HU Zhaotong, et al. Effects of railings on vortex-induced vibration of a bridge deck section[J]. Journal of Vibration and Shock, 2014, 33(3):150-156. doi: 10.3969/j.issn.1000-3835.2014.03.029 EL-GAMMAL M, HANGAN H, KING P. Control of vortex shedding-induced effects in a sectional bridge model by spanwise perturbation method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(8):663-678. doi: 10.1016/j.jweia.2007.01.006 BATTISTA R C, PFEIL M S. Reduction of vortex-induced oscillations of Rio-Niterói bridge by dynamic control devices[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(3):273-288. doi: 10.1016/S0167-6105(99)00108-7 FUJINO Y, YOSHIDA Y. Wind-induced vibration and control of Trans-Tokyo Bay crossing bridge[J]. Journal of Structural Engineering, 2002, 128(8):1012-1025. doi: 10.1061/(ASCE)0733-9445(2002)128:8(1012) 郭增伟, 葛耀君, 卢安平.竖弯涡振控制的调谐质量阻尼器TMD参数优化设计[J].浙江大学学报:工学版, 2012, 46(1):8-13. http://d.old.wanfangdata.com.cn/Conference/7486167GUO Zengwei, GE Yaojun, LU Anping. Parameter optimization of TMD for vortex-induced vibration control[J]. Journal of Zhejiang University:Engineering Science, 2012, 46(1):8-13. http://d.old.wanfangdata.com.cn/Conference/7486167 LARSEN A, SVENSSON E, ANDERSEN H. Design aspects of tuned mass dampers for the Great Belt East Bridge approach spans[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54/55(2):413-426. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=afd2c2b3481f42efc80e5847ca5f5f46 中交公路规划设计院. JTG/TD 60-01-2004公路桥梁抗风设计规范[S].北京: 人民交通出版社, 2004. Highway Agency. BD 49/01 Design manual for roads and bridges (part 3) design rules for aerodynamic effects on bridges[S]. England: [s.n.], 2001. LARSEN A. Aerodynamic aspects of the final design of the 1624 m suspension bridge across the great belt[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48(2):261-285. http://www.sciencedirect.com/science/article/pii/016761059390141A/pdf?md5=470319a0e159200395bf6e3335b0a745&pid=1-s2.0-016761059390141A-main.pdf 钱国伟, 曹丰产, 葛耀君. Π型叠合梁斜拉桥涡振性能及气动控制措施研究[J].振动与冲击, 2015, 34(2):176-181. http://d.old.wanfangdata.com.cn/Periodical/zdycj201502032QIAN Guowei, CAO Fengchan, Ge Yaojun. Vortex-induced vibration performance of cable-stayed bridge with Π shaped composite deck and its aerodynamic control measures[J]. Journal of Vibration and Shock, 2015, 34(2):176-181. http://d.old.wanfangdata.com.cn/Periodical/zdycj201502032 王骑, 廖海黎, 李明水, 等.流线型箱梁气动外形对桥梁颤振和涡振的影响[J].公路交通科技, 2012, 29(8):44-70. doi: 10.3969/j.issn.1002-0268.2012.08.008WANG Qi, LIAO Haili, LI Mingshui, et al. Influence of aerodynamic shape of streamlined box girder on bridge flutter and vortex-induced vibration[J]. Journal of Highway and Transportation Research and Development, 2012, 29(8):44-70. doi: 10.3969/j.issn.1002-0268.2012.08.008 NAGAO F, UTSNUOMIYA H, YOSHIOKA E, et al. Effects of handrails on separated shear flow and vortex-induced oscillation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 71(8):819-827. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d910161bdc3562f30525fe2a3c90f185