Numerical Analysis of Aerodynamic Noise of Motor Car Bogie for High-Speed Trains
-
摘要: 为研究高速列车动车转向架气动噪声特性,建立了动车转向架空气动力学模型,采用定常RNGk-湍流模型与宽频带噪声源模型对其气动噪声声源进行初步探讨,并结合非定常LES大涡模拟与Lighthill声学比拟理论进行了远场气动噪声分析。研究结果表明:动车转向架气动噪声源为轮对、构架、牵引电机1、枕梁、垂向减振器、抗侧滚扭杆等结构的迎风侧凸起部位,且构架对动车转向架远场气动噪声的贡献最大,其次为轮对和抗侧滚扭杆,然后为垂向减振器和枕梁,牵引电机1、牵引电机2、空气弹簧和横向减振器对远场气动噪声的贡献较小。动车转向架远场气动噪声是宽频噪声,具有衰减特性、幅值特性和气动噪声指向性。在低频部分能量较大,中心频率为25、50Hz,且分布规律不随运行速度的改变而变化。Abstract: In order to study the aerodynamic noise characteristics of motor car bogie in high-speed trains, an aerodynamic model of motor car bogie was established, a preliminary study on the aerodynamic noise source of the motor car bogie was made using the steady-state RNG k- turbulence model and the broadband noise source model, and the far-field aerodynamic noise was analyzed by combined use of the transient-state large eddy simulation (LES) and Lighthill' s acoustic analogue theory. The results show that the wheel set, bogie frame, traction motor-1, bolster, vertical shock absorber, anti-rolling torsion bar and other protruding parts on the windward side are the aerodynamic noise source of the bogie. Among them, bogie frame has the largest contribution to the total far-field aerodynamic noise of the bogie, the wheel set and anti-rolling torsion bar have the secondary contribution, and the vertical shock absorber and bolster have the third contribution amount. Compared to the above components, the traction motor-1, traction motor-2, air spring and lateral shock absorber have less contribution to the total noise. In addition, the far-field noise of the motor car bogie is a broadband noise, characterized by attenuation, amplitude and aerodynamic noise directivity. The main energy of the noise in the low frequency band is concentrated at the centre frequencies 25 and 50 Hz, and the power spectral density distribution does not change with the train speed.
-
王伯铭.高速动车组总体及转向架[M]. 成都:西南交通大学出版社,2014: 28-32. GAWTHORPE R G. Train drag reduction from simple design changes[J]. International Journal of Vehicle Design, 1982, 3(3): 263-274. KITAGAWA T, NAGAKURA K. Aerodynamic noise generated by Shinkansen cars[J]. Journal of Sound and Vibration, 2000, 231(5): 913-924. MELLET C, L TOURNEAUX F, POISSON F, et al. High speed train noise emission: latest investigation of the aerodynamic/rolling noise contribution[J]. Journal of Sound and Vibration, 2006, 293(3): 535-546. NAGAKURA K. Localization of aerodynamic noise sources of Shinkansen train[J]. Journal of Sound and Vibration, 2006, 293(3): 547-556. 高阳,王毅刚,王金田,等. 声学风洞中的高速列车模型气动噪声试验研究[J]. 声学技术,2013,32(6): 506-510. GAO Yang, WANG Yigang, WANG Jintian, et al. Testing study of aerodynamic noise for high-speed train model in aero-acoustic wind tunnel[J]. Technical Acoustic, 2013, 32(6): 506-510. 郑循皓,张继业,张卫华. 高速列车转向架空气阻力的数值模拟[J]. 交通运输工程学报,2011,11(2): 45-51. ZHENG Xunhao, ZHANG Jiye, ZHANG Weihua. Numerical simulation of aerodynamic drag for high-speed train bogie[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 45-51. 郗艳红,毛军,高亮,等. 横风作用下高速列车转向架非定常空气动力特性[J]. 中南大学学报:自然科学版,2014,45(5): 1705-1714. XI Yanhong, MAO Jun, GAO Liang, et al. Aerodynamic force/moment for high-speed train bogie in crosswind field[J]. Journal of Central South University: Science and Technology, 2014, 45(5): 1705-1714. 杨志刚,高喆,陈羽,等. 裙板安装对高速列车气动性能影响的数值分析[J]. 计算机辅助工程,2010,19(3): 16-21. YANG Zhigang, GAO Zhe, CHEN Yu, et al. Numerical analysis on influence on aerodynamic performance of high-speed train caused by installation of skirt plates[J]. Computer Aided Engineering, 2010, 19(3): 16-21. 黄莎,杨明智,李志伟,等. 高速列车转向架部位气动噪声数值模拟及降噪研究[J]. 中南大学学报:自然科学版,2011,42(12): 3899-3904. HUANG Sha, YANG Mingzhi, LI Zhiwei, et al. Aerodynamic noise numerical simulation and noise reduction of high-speed train bogie section[J]. Journal of Central South University: Science and Technology, 2011, 42(12): 3899-3904. ZHU J Y, HU Z W, THOMPSON D J. Analysis of aerodynamic and aeroacoustic behaviour of a simplified high-speed train bogie[J]. Noise and Vibration Mitigation for Rail Transportation Systems, 2015, 126: 489-496. GARNIER E, SAGAUT P, ADAMS N. Large eddy simulation for compressible flows[M]. : Springer, 2009: 172-184. FFOWCS-WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions for the Royal Society of London, Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321-342. 郑拯宇,李人宪. 高速列车表面气动噪声偶极子声源分布数值分析[J]. 西南交通大学学报,2011,46(6): 996-1002. ZHENG Zhengyu, LI Renxian. Numerical analysis of aerodynamic dipole source on high-speed train surface[J]. Journal of Southwest Jiaotong University, 2011, 46(6): 996-1002. LIGHTHILL M J. On sound generated aerodynamically: part 1: general theory[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1952, 211: 564-587. ISO. ISO 3095-2005 Railway application-acoustics-measurement of noise emitted by railbound vehicles[S]. : ISO, 2005. 马大猷. 现代声学理论基础[M]. 北京:科学出版社,2004: 57-59.
点击查看大图
计量
- 文章访问数: 598
- HTML全文浏览量: 97
- PDF下载量: 230
- 被引次数: 0