• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 21 Issue 2
Apr.  2008
Turn off MathJax
Article Contents
XU Huidong, XIE Jianhua. Period-Doubling Bifurcation of Single-Degree-of-Freedom Piecewise-Linearity System with Clearance[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 227-231.
Citation: XU Huidong, XIE Jianhua. Period-Doubling Bifurcation of Single-Degree-of-Freedom Piecewise-Linearity System with Clearance[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 227-231.

Period-Doubling Bifurcation of Single-Degree-of-Freedom Piecewise-Linearity System with Clearance

  • Received Date: 23 Jul 2007
  • Publish Date: 25 Apr 2008
  • The period-doubling bifurcation and chaos of periodic motions of a single-degree-of-freedom piecewise linear system with clearance was studied.The switching matrix for the system was obtained,and the period-doubling bifurcation of periodic motions was analyzed by the Floquet theory.The poincaré map was established,and the period-doubling bifurcations and chaotic behaviors in the non-smooth system were further investigated by means of numerical simulation.The results show that there is a Floquet multiplier close to-1 for the system,and period-doubling bifurcations occur when the excitation frequency approaches a critical bifurcation point.

     

  • loading
  • GUCKENHEIMER J,HOLMESP.Nonlinear oscillations,dynamical systems,and bifurcations of vector fields[M].New York:Springer-Verlag,1983:117-287.[2] HAGEDORN P.Non-linear oscillations[M].Oxford:Clarendon Press,1981:117-154.[3] KUZNETSOV Y A.Elements of applied bifurcation theory[M].New York:Springer-Verlag,2004:117-155.[4] SEYDEL R.Practical bifurcation and stability analysis[M].New York:Springer-Verlag,1994:249-297.[5] LUO A C J,CHEN L.Periodic motions and grazing in a harmonically forced,piecewise,linear oscillator with impacts[J].Chaos,Solitons and Fractals,2005; 24(2).:567-578.[6] LI Y,FENG Z C.Bifurcation and chaos in friction-induced vibration[J].Communications in Nonlinear Science and Numerical Simulation,2004,9(6):633-647.[7] XIE J H,DING W C.Hopf-Hopf bifurcation and invariant toms T2 of a vibro-impact system[J].International Journal of Non-Linear Mechanics,2005; 40(4):531-543.[8] YOSHITAKE Y,SUEOKA A,SHOJI N,et al.Vibrations of nonlinear systems with discontinuities:the case of the preloaded compliance system[J].JSME Series.1998,41 (4):710-717.[9] 安德罗诺夫A A,维特A A,哈依金C 3.振动理论(下册)[M].高为炳,杨汝藏译.北京:科学出版社,1974:102.[10] LEINE R I,NIJMEIJER H.Dynamics and bifurcation of non-smooth mechanical systems[M].Berlin:Springer,2004:101-118.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1402) PDF downloads(515) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return