• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 26 Issue 2
Apr.  2013
Turn off MathJax
Article Contents
LI Peng, YANG Yiren, LU Li. Chaotic Motion of Two-Dimensional Viscoelastic Panel with External Excitation in Subsonic Flow[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 217-222. doi: 10.3969/j.issn.0258-2724.2013.02.005
Citation: LI Peng, YANG Yiren, LU Li. Chaotic Motion of Two-Dimensional Viscoelastic Panel with External Excitation in Subsonic Flow[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 217-222. doi: 10.3969/j.issn.0258-2724.2013.02.005

Chaotic Motion of Two-Dimensional Viscoelastic Panel with External Excitation in Subsonic Flow

doi: 10.3969/j.issn.0258-2724.2013.02.005
  • Received Date: 21 Jun 2011
  • Publish Date: 25 Apr 2013
  • In order to study the nonlinear dynamics of a panel subjected to external excitation in subsonic flow, the nonlinear governing motion equations of a two-dimensional forced subsonic viscoelastic panel were established by Hamilton theory, and discretized to a series of ordinary differential equations using the Galerkin method. Then, the system equilibrium points and their stability were analyzed, and Melnikov's method was used to obtain the critical values of system parameters for chaos appearance. The critical relations between the external excitation amplitude, frequency, and flow velocity were discussed and compared with the results of chaotic motions by numerical simulation. The results show that the number of equilibrium points and their stability will change after the dimensionless dynamic pressure exceeds 64.42, and the critical parameters determined by Melnikov's method match up to those obtained by numerical simulation. Therefore, the proposed method can be used to judge whether the chaotic motion happens or not.

     

  • loading
  • SCHETZ J A. Aerodynamics of high-speed trains[J]. Ann. Rev. Fluid. Mech, 2001, 23: 371-414.
    JERPMR C R. A train for the 21st century [J]. Rail International, 1994, 25(4): 2-8.
    李鹏,杨翊仁,鲁丽. 外激励作用下亚音速二维壁板的分叉及响应研究[J].力学学报,2011,43(4): 746-754. LI Peng, YANG Yiren, LU Li. Bifurcation and responses analysis of two-dimensional panel with external excitation in subsonic flow[J]. Chinese Journal of Theoretical and Application Mechanics, 2011, 43(4): 746-754.
    谢建华. 一类单自由度强迫振动系统的混沌运动[J]. 西南交通大学学报,1998,33(1): 72-76. XIE J H. Chaotic motions in a forced vibration system of single-degree-of-freedom[J]. Journal of Southwest Jiaotong University, 1998, 33(1): 72-76.
    WIGGINS S. Introduction to applied nonlinear dynamical system and chaos[M]. New York: Springer-Verlag, 1990: 687-720.
    GUKENHEIMER J, HOLMES P. Nonlinear oscillations, dynamical system, and bifurcation of vector fields[M]. New York: Springer-Verlag, 1983: 180-212.
    CHEN D L, YANG Y R, FAN C G. Nonlinear flutter of a two-dimension thin plate subjected to aerodynamic heating by differential quadrature method[J]. Acta Mechanica Sinica, 2008, 24(1): 45-50.
    张伟,霍拳忠. 参数激励和强迫激励联合作用下非线性振动的分叉[J]. 力学学报,1991,23(4): 464-474. ZHANG Wei, HUO Quanzhong. Bifurcation of nonlinear oscillation system under combined parametric and forcing excitation[J]. Acta Mechanica Sinica, 1991, 23(4): 464-474.
    WANG L, NI Q, HUANG Y Y. Bifurcations and chaos in forced cantilever system with impacts[J]. Journal of Sound and Vibration, 2006, 296: 1068-1078.
    KENFACK A. Bifurcation structure of two coupled periodically driven double-well Duffing oscillators[J]. Chaos, Solutons and Fractals, 2003, 15: 205-218.
    JING Z J, WANG R Q. Complex dynamics in Duffing system with two external forcings[J]. Chaos, Solitons and Fractals, 2005, 23: 399-411.
    包日东,毕文军,闻邦椿. 两端固定输流管道混沌运动预测[J]. 振动与冲击,2008,27(6): 99-102. BAO Ridong, BI Wenjun, WEN Bangchun. Predicting chaotic motion of a two end-fixed fluid conveying pipe[J]. Journal of Vibration and Shock, 2008, 27(6): 99-102.
    BISPLINGHOFF R L, ASHLEY H, HALFMAN R L. Aeroelasticity[M]. Cambridge: Addison-Wesley Publishing Co. Inc., 1955: 285-326.
    DOWELL E H. Aeroelasticity of plates and shells[M]. Leyden: Noordhoff International Publishing, 1975: 51-55.
    LI P, YANG Y R, XU W, et al. On the aeroelastic stability and bifurcation structure of subsonic nonlinear thin panels subjected to external excitation[J]. Archive of Applied Mechanics, 2012, 82(9): 1251-1267.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1114) PDF downloads(428) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return