Citation: | HOU Suwei, TIAN Shuheng, TANG Zhiqiang, XI Jianying. Experimental Study on a New Clamping Anchor for Carbon Fiber Reinforced Polymer Plate[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240554 |
To address the problem of uneven transverse compressive stress distribution in traditional carbon fiber reinforced polymer (CFRP) plate anchors, which makes the plate prone to tearing failure during the tensioning process, a new clamping anchor for CFRP plates was developed. The new anchor features a preloaded bolt arranged along the central axis. By setting the bolt length and controlling its displacement, a quantified compressive force was applied to the CFRP plate, and the force mechanism of the new anchor was analyzed. Next, finite element software ANSYS was used for simulation, and the key factors affecting anchorage performance were analyzed. Finally, a static tensile test was performed on a CFRP plate with a thickness of 2 mm and a width of 50 mm. The results are as follows. 1) The anchorage performance of the new anchor is closely related to the clamp thickness, the outer clamp plate thicknesses, and the bolt preload force. When the clamp thickness is 20 mm, the transverse compressive stress distribution of the CFRP plate is relatively uniform, with a difference between the maximum and minimum compressive stresses of only 9.8 MPa. When the thicknesses of the upper and lower outer clamp plates are 30 mm and 20 mm, respectively, the bending stress of each component remains within a safe range. When the preload force of the bolt is 170 kN, the compressive stress level in the CFRP plate significantly increases, while the shear stress remains consistently low. 2) In the static tensile test, the new anchor withstands a maximum tensile force of 260.7 kN, achieving an anchoring efficiency of 108.63%. The failure mode of the CFRP plate is fiber rupture, with no tearing or other abnormal failure modes observed. The anchor demonstrates excellent static anchorage performance.
[1] |
《中国公路学报》编辑部. 中国桥梁工程学术研究综述•2021[J]. 中国公路学报,2021,34(2): 1-97. doi: 10.3969/j.issn.1001-7372.2021.02.002
Editorial Department of China Journal of Highway and Transport. Review on China’s bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. doi: 10.3969/j.issn.1001-7372.2021.02.002
|
[2] |
梅葵花,王凤轩,孙胜江. 纤维增强复合材料加固混凝土桥梁结构研究进展[J]. 建筑科学与工程学报,2024,41(1): 31-51.
MEI Kuihua, WANG Fengxuan, SUN Shengjiang. Research progress of fiber reinforced polymer in strengthening concrete bridge structure[J]. Journal of Architecture and Civil Engineering, 2024, 41(1): 31-51.
|
[3] |
王海涛,朱长玉,熊浩,等. 锚固方法和预应力水平对CFRP板加固钢筋混凝土梁抗弯性能的影响[J]. 河海大学学报(自然科学版),2023,51(5): 104-110. doi: 10.3876/j.issn.1000-1980.2023.05.014
WANG Haitao, ZHU Changyu, XIONG Hao, et al. Effects of anchorage method and prestressing level on flexural behavior of reinforced concrete beams strengthened with CFRP plates[J]. Journal of Hohai University (Natural Sciences), 2023, 51(5): 104-110. doi: 10.3876/j.issn.1000-1980.2023.05.014
|
[4] |
WANG H T, BIAN Z N, WU Q, et al. Development of a novel anchorage and tensioning system for strengthening steel beams with unbonded prestressed CFRP plates[J]. Engineering Structures, 2024, 312: 118234. doi: 10.1016/j.engstruct.2024.118234
|
[5] |
MOHEE F M, AL-MAYAH A, PLUMTREE A. Anchors for CFRP plates: State-of-the-art review and future potential[J]. Composites Part B: Engineering, 2016, 90: 432-442. doi: 10.1016/j.compositesb.2016.01.011
|
[6] |
YE H W, WU C J, LIU D J, et al. Friction and wear behavior of CFRP plate in contact with roughened mould steel under high normal pressure[J]. Construction and Building Materials, 2019, 220: 308-319. doi: 10.1016/j.conbuildmat.2019.06.007
|
[7] |
DUO Y Y, YANG Y, LIU X G, et al. Experimental investigation on the friction behavior of CFRP plate in contact with sandblasted steel plate[J]. Structures, 2023, 55: 2491-2503. doi: 10.1016/j.istruc.2023.06.073
|
[8] |
诸葛萍,强士中,侯苏伟. 碳纤维筋夹片式锚具参数试验研究[J]. 西南交通大学学报,2010,45(4): 514-520. doi: 10.3969/j.issn.0258-2724.2010.04.005
ZHUGE Ping, QIANG Shizhong, HOU Suwei. Experimental investigation of wedge-anchor parameters for CFRP tendons[J]. Journal of Southwest Jiaotong University, 2010, 45(4): 514-520. doi: 10.3969/j.issn.0258-2724.2010.04.005
|
[9] |
吴刚. 预应力碳纤维板楔形夹片式锚具的受力仿真分析与优化[D]. 南昌:南昌大学,2021.
|
[10] |
储焙宇,钱登朝,诸葛萍,等. 预应力CFRP板平板锚具承载力评估理论与试验研究[J]. 宁波大学学报(理工版),2020,33(4): 41-48. doi: 10.3969/j.issn.1001-5132.2020.04.008
CHU Beiyu, QIAN Dengchao, ZHUGE Ping, et al. Theoretical and experimental study on load-carrying capacity evaluation of CFRP plates bond-type anchors[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2020, 33(4): 41-48. doi: 10.3969/j.issn.1001-5132.2020.04.008
|
[11] |
许颢迈. CFRP板新型夹持式锚固系统性能研究[D]. 北京:北京建筑大学,2019.
|
[12] |
KIANMOFRAD F, GHAFOORI E, ELYASI M M, et al. Strengthening of metallic beams with different types of pre-stressed un-bonded retrofit systems[J]. Composite Structures, 2017, 159: 81-95. doi: 10.1016/j.compstruct.2016.09.020
|
[13] |
MOHEE F M, AL-MAYAH A, PLUMTREE A. Friction characteristics of CFRP plates in contact with copper plates under high contact pressure[J]. Journal of Composites for Construction, 2016, 20(5): 04016022. doi: 10.1061/(ASCE)CC.1943-5614.0000673
|
[14] |
MOHEE F M, AL-MAYAH A. Development of an innovative prestressing CFRP plate anchor: numerical modelling and parametric study[J]. Composite Structures, 2017, 177: 1-12. doi: 10.1016/j.compstruct.2016.12.039
|
[15] |
MOHEE F M, AL-MAYAH A, PLUMTREE A. Development of a novel prestressing anchor for CFRP plates: experimental investigations[J]. Composite Structures, 2017, 176: 20-32. doi: 10.1016/j.compstruct.2017.05.011
|
[16] |
YE H W, LIU C M, HOU S W, et al. Design and experimental analysis of a novel wedge anchor for prestressed CFRP plates using pre-tensioned bolts[J]. Composite Structures, 2018, 206: 313-325. doi: 10.1016/j.compstruct.2018.08.075
|
[17] |
YE H W, ZHANG Q, LIU C M, et al. Failure mechanisms governing anchoring force of friction-based wedge anchorage for prestressed CFRP plate[J]. Composite Structures, 2019, 225: 111142. doi: 10.1016/j.compstruct.2019.111142
|
[18] |
DUO Y Y, QI L G, HUANG S D, et al. Planar clamping anchorage for CFRP plate: experimental research, friction-adhesion synergistic mechanism and theoretical model[J]. Construction and Building Materials, 2024, 441: 137540. doi: 10.1016/j.conbuildmat.2024.137540
|
[19] |
齐艺佳,肖丹,王中强. 夹片外伸式CFRP板锚具设计优化与试验研究[J/OL]. 中外公路,2024:1-11. (2024-06-17). https://kns.cnki.net/kcms/detail/43.1363.U.20240614.1746.013.html.
|
[20] |
龙佩恒,史文浩,侯苏伟,等. 基于位移控制CFRP板新型锚具锚固性能研究[J]. 中国公路学报,2021,34(5): 76-85.
LONG Peiheng, SHI Wenhao, HOU Suwei, et al. Anchorage performance of a new carbon fiber board anchor based on displacement control[J]. China Journal of Highway and Transport, 2021, 34(5): 76-85.
|
[21] |
姜艳. 双曲面CFRP板锚具性能研究[D]. 北京:北京建筑大学,2023.
|
[22] |
中华人民共和国交通运输部. 桥梁用预应力碳纤维板-夹持式锚具:JT/T 1267—2019[S]. 北京:人民交通出版社,2019.
|
[1] | LIU Yiming, ZHANG Qinghua, BU Yizhi. Experimental Study and Numerical Analysis of Shear Behavior of Studs Embedded in Engineered Cementitious Composite Bridge Decks[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 35-44. doi: 10.3969/j.issn.0258-2724.20220824 |
[2] | WEI Xing, ZHOU Linjun, LI Gang. Numerical Analysis of Seismic Energy Dissipation Performance of Corrugated Steel Plate Shear Wall with Low Yield Point[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 546-554. doi: 10.3969/j.issn.0258-2724.20210305 |
[3] | ZHENG Jing, RAO Shaokai, ZHOU Jun, YANG Dan, SHEN Lixin, HUANG Shuhao. Fracture Analysis and Failure Mechanism of TA3 Limited Contact-Dynamic Compression Plates[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 411-419. doi: 10.3969/j.issn.0258-2724.20190182 |
[4] | SHAO Yongbo, ZHU Hongmei, YANG Dongping. Static Bearing Capacity Analysis of CFRP-Reinforced Short CHS Steel Tubular Columns under Axial Compression[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 167-174. doi: 10.3969/j.issn.0258-2724.20180527 |
[5] | ZHAO Jizhong, XU Xiang, DING Li, KAN Qianhua, KANG Guozheng. Finite Element Analysis of Rolling Strengthening Process for Wheel Tread of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1337-1347. doi: 10.3969/j.issn.0258-2724.20180803 |
[6] | YE Huawen, LI Xinshun, SHUAI Chun, QU Haobo, XU Xun, WEI Xing. Fatigue Experimental Analysis of Damaged Steel Beams Strengthened with Prestressed Unbonded CFRP Plates[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 129-136. doi: 10.3969/j.issn.0258-2724.20180297 |
[7] | WU Yanbin, HUANG Fanglin. Refined Finite Element Modeling Methodof Spatial Prestressed Steel Beam[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1082-1087. doi: 10.3969/j.issn.0258-2724.2017.06.007 |
[8] | JIANG Jun, BO Qian-Hui, GOU Gong-Xie. Model Test for Local Stress Distribution in Anchorage Zones of Continuous Rigid Frame Composite Arch Bridge[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 726-731. doi: 10.3969/j.issn.0258-2724.2011.05.003 |
[9] | CHUge Ping, QIANG Shi-Zhong, HOU Su-Wei. Experimental Investigation of Wedge-Anchor Parameters for CFRP Tendons[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 514-520. doi: 10. 3969/ j. issn. 0258-2724. |
[10] | YE Huawen, KÖ, NIG Christian, UMMENHOFER Thomas, QIANG Shizhong. Experimental Investigation of Fatigue Behavior of Tension Steel Plate Reinforced with Prestressed CFRP Laminates[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 823-829. |
[11] | ZHOU Wen, LIU Xueyi. FEM Simulation of Straightening Tongue Rail of High-Speed Turnout[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 82-85,95. |
[12] | ZHANG Yuan-hai, LI Qiao. Finite Element Analysis of Shear Lag Effect of Skew Box Girder Bridges[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 64-68. |
[13] | YANG Rong-shan. Finite Element Analysis of Stress in Rail Joint[J]. Journal of Southwest Jiaotong University, 2003, 16(3): 314-317. |
[14] | FUHai-ying, HE Chang-rong, CHEN Qun. 2-D Finite Element Analysis of Prestressed Anchorage Sheet-Pile Wall[J]. Journal of Southwest Jiaotong University, 2003, 16(4): 389-392. |
[15] | ZUO De-yuan, ZHENGAn-qi. An Elastic-Plastic Finite Element Analysis on Tunnel Structures at Cycled Temperatures[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 172-175. |
[16] | CHENWei-qing, ZHANG Qiang. A Model Test on the Anchorage Zones of the Second Nanjing Changjiang River Bridge[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 185-189. |