Citation: | SHI Wei, CHAI Jin, XIA Mingyuan. Characteristics Analysis of Lithium Metal Batteries with Ultra-High Energy Density under Pressure Conditions[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240033 |
External pressure plays a crucial role in the performance of lithium metal batteries. In order to study the macroscopic performance and the microscopic lithium deposition characteristics of lithium metal batteries under different pressure conditions, the pressure test and scanning electron microscope (SEM) verification were conducted to verify that applying external pressure can improve the surface morphology of negative electrodes of lithium metal batteries. The nonlinear phase field model and the force model were coupled to reveal relevant mechanisms. The influence of non-pressure conditions on the deposition morphology and internal stress distribution of lithium was analyzed from the microscopic perspective. The results show that in the absence of external pressure, the external expansion of lithium metal batteries accelerates the continuous growth of lithium dendrites, which results in rapid capacity fading. According to the simulation data, as external pressure rises, the principal axis length of lithium dendrites decreases from 2.04 μm to 1.10 μm, and the aspect ratio increases from 0.32 to 0.79. The smooth and robust morphology evolution can significantly reduce the specific surface area of lithium dendrites, but at the same time, it increases the mechanical instability. The phases of lithium dendrites under different external pressures are displayed, which provides theoretical support for the pressure management and design of lithium metal batteries.
[1] |
秦潜聪,吴冠霖,高原,等. 面向战场条件的无人机集群分布式存储方法[J]. 西南交通大学学报,2024,59(4): 942-958. doi: 10.3969/j.issn.0258-2724.20230521
QIN Qiancong, WU Guanlin, GAO Yuan, et al. Distributed storage methods for unmanned aerial vehicle clusters in battlefield[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 942-958. doi: 10.3969/j.issn.0258-2724.20230521
|
[2] |
郭林,刘飞,李佳钰,等. 基于能量管理策略的太阳能无人机航迹跟踪控制[J]. 西北工业大学学报,2023,41(2): 409-418. doi: 10.3969/j.issn.1000-2758.2023.02.019
GUO Lin, LIU Fei, LI Jiayu, et al. Path tracking control of solar-powered UAV based on energy management strategy[J]. Journal of Northwestern Polytechnical University, 2023, 41(2): 409-418. doi: 10.3969/j.issn.1000-2758.2023.02.019
|
[3] |
KRAUSKOPF T, RICHTER F H, ZEIER W G, et al. Physicochemical concepts of the lithium metal anode in solid-state batteries[J]. Chemical Reviews, 2020, 120(15): 7745-7794. doi: 10.1021/acs.chemrev.0c00431
|
[4] |
金礼芬,蒲建,杨文斌,等. 太阳能无人机的能源系统技术与发展趋势[J]. 信息记录材料,2022,23(6): 13-16. doi: 10.3969/j.issn.1009-5624.2022.6.xxjlcl202206003
JIN Lifen, PU Jian, YANG Wenbin, et al. Overview of solar powered UAV development[J]. Information Recording Materials, 2022, 23(6): 13-16. doi: 10.3969/j.issn.1009-5624.2022.6.xxjlcl202206003
|
[5] |
ZHANG R, SHEN X, ZHANG Y T, et al. Dead lithium formation in lithium metal batteries: a phase field model[J]. Journal of Energy Chemistry, 2022, 71: 29-35. doi: 10.1016/j.jechem.2021.12.020
|
[6] |
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. doi: 10.1021/acs.chemrev.7b00115
|
[7] |
ARGUELLO M E, LABANDA N A, CALO V M, et al. Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling using open-source finite element library[J]. Journal of Energy Storage, 2022, 53: 104892.1-104892.21.
|
[8] |
李志强,刘媛,李彬,等. 一种面向浮充工况的锂离子电池组早期内短路快速定量诊断方法[J/OL]. 西南交通大学学报,1-8[2025-02-17]. http://kns.cnki.net/kcms/detail/51.1277.U.20240614.1318.006.html.
LI Zhiqiang, LIU Yuan, LI Bin, et al. A rapid quantitative diagnosis method for early internal short circuit of lithium-ion battery packs under float charging conditions [J/OL]. Journal of Southwest Jiaotong University, 1-8 [2025-02-17]. http://kns.cnki.net/kcms/detail/51.1277.U.20240614.1318.006.html.
|
[9] |
RAMASUBRAMANIAN A, YURKIV V, FOROOZAN T, et al. Lithium diffusion mechanism through solid–electrolyte interphase in rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10237-10245. doi: 10.1021/acs.jpcc.9b00436
|
[10] |
MU W Y, LIU X L, WEN Z, et al. Numerical simulation of the factors affecting the growth of lithium dendrites[J]. Journal of Energy Storage, 2019, 26: 100921.1-100921.10.
|
[11] |
VERMA P, PURAVANKARA S, NANDANWAR M N, et al. Insights into the morphological evolution of mossy dendrites in lithium metal symmetric and full cell: a modelling study[J]. Journal of the Electrochemical Society, 2023, 170(3): 030529.1-030529.11.
|
[12] |
CHENG F, HU Y, ZHAO L X. Analysis of weak solutions for the phase-field model for lithium-ion batteries[J]. Applied Mathematical Modelling, 2020, 78: 185-199. doi: 10.1016/j.apm.2019.09.048
|
[13] |
REN Y, ZHOU Y, CAO Y. Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling[J]. The Journal of Physical Chemistry C, 2020, 124(23): 12195-12204. doi: 10.1021/acs.jpcc.0c01116
|
[14] |
ARGUELLO M E, GUMULYA M, DERKSEN J, et al. Phase-field modeling of planar interface electrodeposition in lithium-metal batteries[J]. Journal of Energy Storage, 2022, 50: 104627.1-104627.13.
|
[15] |
JING H X, XING H, DONG X L, et al. Nonlinear phase-field modeling of lithium dendritic growth during electrodeposition[J]. Journal of the Electrochemical Society, 2022, 169(3): 032511.1-032511.6.
|
[16] |
MONROE C, NEWMAN J. Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions[J]. Journal of the Electrochemical Society, 2003, 150(10): A1377.1-A1377.8.
|
[17] |
GUYER J E, BOETTINGER W J, WARREN J A, et al. Phase field modeling of electrochemistry Ⅰ: equilibrium[J]. Physical Review E, 2004, 69(2): 021603.1-021603.13.
|
[18] |
CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. doi: 10.1016/j.jpowsour.2015.09.055
|
[19] |
ZHANG R, SHEN X, CHENG X B, et al. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation?[J]. Energy Storage Materials, 2019, 23: 556-565. doi: 10.1016/j.ensm.2019.03.029
|
[20] |
MCDOWELL M T, CORTES F J Q, THENUWARA A C, et al. Toward high-capacity battery anode materials: chemistry and mechanics intertwined[J]. Chemistry of Materials, 2020, 32(20): 8755-8771. doi: 10.1021/acs.chemmater.0c02981
|
[21] |
TANG Y F, ZHANG L Q, CHEN J Z, et al. Electro-chemo-mechanics of lithium in solid state lithium metal batteries[J]. Energy & Environmental Science, 2021, 14(2): 602-642.
|
[22] |
WANG M J, KAZYAK E, DASGUPTA N P, et al. Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with practical considerations[J]. Joule, 2021, 5(6): 1371-1390. doi: 10.1016/j.joule.2021.04.001
|
[23] |
朱迎迎,王勇,徐淼,等. 追踪锂金属负极的压力与形貌变化[J]. 物理化学学报,2023,39(1): 77-84.
ZHU Yingying, WANG Yong, XU Miao, et al. Tracking pressure changes and morphology evolution of lithium metal anodes[J]. Acta Physico-Chimica Sinica, 2023, 39(1): 77-84.
|
[24] |
SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Advanced Energy Materials, 2021, 11(10): 2003416.1-2003416.9.
|
[25] |
ZHANG X, WANG Q J, HARRISON K L, et al. Pressure-driven interface evolution in solid-state lithium metal batteries[J]. Cell Reports Physical Science, 2020, 1(2): 100012.1-100012.19.
|
[26] |
罗崇亮,余云燕,张璟,等. 硫酸盐渍土热-质迁移试验与耦合模型[J]. 西南交通大学学报,2023,58(2): 470-478.
LUO Chongliang, YU Yunyan, ZHANG Jing, et al. Heat-mass transfer test and coupling model of sulfate saline soil[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 470-478.
|
[1] | CHEN Feng, YANG Jie, ZHANG Chong, YU Zhen, LIU Xianfeng. Numerical Analysis of Multiphysics Coupling of Grout Penetration[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1469-1478. doi: 10.3969/j.issn.0258-2724.20220763 |
[2] | CHEN Yong, WANG Zhen, ZHANG Jiaojiao. Lightweight Detection of Railway Object Intrusion Based on Spectral Pooling and Shuffled-Convolutional Block Attention Module Enhancement[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1294-1304. doi: 10.3969/j.issn.0258-2724.20220074 |
[3] | XUE Songtao, BAN Xinlei, XIE Liyu, YU Bilong. Theoretical Model and Performance Tests of Rotational Eddy Current Dampers with Cable[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 317-322. doi: 10.3969/j.issn.0258-2724.20170802 |
[4] | ZHANG Heshan, XU Jin, DENG Zhaoxiang, JIANG Yanjun. Temperature Field of in-Wheel Motor Using Coupled Multi-physics Domain Solution[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 76-83, 91. doi: 10.3969/j.issn.0258-2724.20170263 |
[5] | WANG Yanqin, ZHANG Qiumin, LIN Feihong, DONG Liang. Electromagnetic-Thermal Field Coupling Calculation of Contactless Power Transfer Vehicle[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 545-551. doi: 10.3969/j.issn.0258-2724.20191123 |
[6] | LIU Yumei, CHEN Yun, ZHAO Congcong, XIONG Mingye, QIAO Ningguo. Assessment for External Influence Factors of High-Speed Train Transmission Reliability[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 535-541. doi: 10.3969/j.issn.0258-2724.20170563 |
[7] | ZHAO Bida, LIU Chengqing, ZHANG Shengye, ZHANG Jiansheng. Calculation Model for Axial Rigidity of CHS Y-Type Joints[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 872-878. doi: 10.3969/j.issn.0258-2724.2015.05.016 |
[8] | SHI Wanyuan, ZHANG Fengchao, TIAN Xiaohong, SHEN Jun. Phase Field Modeling on Effects of Static Magnetic Field on Oscillatory Deformation of Molten Droplet[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 382-387. doi: 10.3969/j.issn.0258-2724.2015.02.027 |
[9] | SHI Wanyuan, ZHANG Fengchao, TIAN Xiaohong, TSUKADA Takao. Phase Field Modeling of Internal Convection and Free Interface Deformation of Levitated Droplet of Molten Silicon[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 692-697. doi: 10.3969/j.issn.0258-2724.2012.04.025 |
[10] | YU Xinian, WANG Baoyan, LIU Jun. Experimental Study on Electrochemical Corrosion Mechanism of Welded Bogies[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 133-138. doi: 10.3969/j.issn.0258-2724.2012.021.01.022 |
[11] | WANG Zhong-Hua, YANG Ji, CHENG Jin, ZHANG Yong. Sliding Mode Control of Acrobot Robot with External Disturbance[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 115-120. doi: 10.3969/j.issn.0258-2724.2011.01.018 |
[12] | YUAN Xiao-Hui, HAN Ru-Wang, ZHONG Xiao-Chun. Pressure Distribution Model of Simultaneous Backfill Grouting of Shield Tunnel[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 18-23. doi: 10.3969/j.issn.0258-2724.2011.01.003 |
[13] | LI Jinping, CHEN Jianjun, ZHOU Chuanjun. Perturbed Numerical Algorithm of Nonprobabilistic Convex Set Theoretical Models for Temperature Field[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 101-105. |
[14] | FAN Ximei, ZHOU Zuowan, LI Yanxia, ZHANG Huiguang. Field Emission and Photoluminescence Properties of Al-Doped T-ZnO Whiskers[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 806-809,815. |
[15] | HE Yulong, YANG Lizhong, YANG Jiyi. Governing Equations for Coupled Thermo-Hydro-Mechanical Behaviors in Unsaturated Rock Mass[J]. Journal of Southwest Jiaotong University, 2006, 19(4): 419-423. |
[16] | YANQi-xiang, LIUHao-wu, WANG Zhong. The Influence of Boundary Character of Reservoir Bottom on Hydrodynamics in Fluid-Structure Systems[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 246-249. |
[17] | QiLinli, Li Zhiming, . Design and Production of Multi-Structure Silver Halide Crystallite[J]. Journal of Southwest Jiaotong University, 1999, 12(2): 238-242. |