• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
XU Chengcheng, XU Fangchao, SUN Feng, ZHANG Xiaoyou, JIN Junjie, LUAN Boran. Micro-positioning Control of Magnetic Actuator for Electrical Discharge Machining[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 610-617. doi: 10.3969/j.issn.0258-2724.20210987
Citation: SHI Wei, CHAI Jin, XIA Mingyuan. Characteristics Analysis of Lithium Metal Batteries with Ultra-High Energy Density under Pressure Conditions[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240033

Characteristics Analysis of Lithium Metal Batteries with Ultra-High Energy Density under Pressure Conditions

doi: 10.3969/j.issn.0258-2724.20240033
  • Received Date: 16 Jan 2024
  • Rev Recd Date: 07 Apr 2024
  • Available Online: 11 Mar 2025
  • External pressure plays a crucial role in the performance of lithium metal batteries. In order to study the macroscopic performance and the microscopic lithium deposition characteristics of lithium metal batteries under different pressure conditions, the pressure test and scanning electron microscope (SEM) verification were conducted to verify that applying external pressure can improve the surface morphology of negative electrodes of lithium metal batteries. The nonlinear phase field model and the force model were coupled to reveal relevant mechanisms. The influence of non-pressure conditions on the deposition morphology and internal stress distribution of lithium was analyzed from the microscopic perspective. The results show that in the absence of external pressure, the external expansion of lithium metal batteries accelerates the continuous growth of lithium dendrites, which results in rapid capacity fading. According to the simulation data, as external pressure rises, the principal axis length of lithium dendrites decreases from 2.04 μm to 1.1 μm, and the aspect ratio increases from 0.32 to 0.79. The smooth and robust morphology evolution can significantly reduce the specific surface area of lithium dendrites, but at the same time, it increases the mechanical instability. The phases of lithium dendrites under different external pressures are displayed, which provides theoretical support for the pressure management and design of lithium metal batteries.

     

  • [1]
    秦潜聪,吴冠霖,高原,等. 面向战场条件的无人机集群分布式存储方法[J]. 西南交通大学学报,2024,59(4): 942-958. doi: 10.3969/j.issn.0258-2724.20230521

    QIN Qiancong, WU Guanlin, GAO Yuan, et al. Distributed storage methods for unmanned aerial vehicle clusters in battlefield[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 942-958. doi: 10.3969/j.issn.0258-2724.20230521
    [2]
    郭林,刘飞,李佳钰,等. 基于能量管理策略的太阳能无人机航迹跟踪控制[J]. 西北工业大学学报,2023,41(2): 409-418. doi: 10.3969/j.issn.1000-2758.2023.02.019

    GUO Lin, LIU Fei, LI Jiayu, et al. Path tracking control of solar-powered UAV based on energy management strategy[J]. Journal of Northwestern Polytechnical University, 2023, 41(2): 409-418. doi: 10.3969/j.issn.1000-2758.2023.02.019
    [3]
    KRAUSKOPF T, RICHTER F H, ZEIER W G, et al. Physicochemical concepts of the lithium metal anode in solid-state batteries[J]. Chemical Reviews, 2020, 120(15): 7745-7794. doi: 10.1021/acs.chemrev.0c00431
    [4]
    金礼芬,蒲建,杨文斌,等. 太阳能无人机的能源系统技术与发展趋势[J]. 信息记录材料,2022,23(6): 13-16. doi: 10.3969/j.issn.1009-5624.2022.6.xxjlcl202206003

    JIN Lifen, PU Jian, YANG Wenbin, et al. Overview of solar powered UAV development[J]. Information Recording Materials, 2022, 23(6): 13-16. doi: 10.3969/j.issn.1009-5624.2022.6.xxjlcl202206003
    [5]
    ZHANG R, SHEN X, ZHANG Y T, et al. Dead lithium formation in lithium metal batteries: a phase field model[J]. Journal of Energy Chemistry, 2022, 71: 29-35. doi: 10.1016/j.jechem.2021.12.020
    [6]
    CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [7]
    ARGUELLO M E, LABANDA N A, CALO V M, et al. Dendrite formation in rechargeable lithium-metal batteries: Phase-field modeling using open-source finite element library[J]. Journal of Energy Storage, 2022, 53: 104892.1-104892.21.
    [8]
    李志强,刘媛,李彬,等. 一种面向浮充工况的锂离子电池组早期内短路快速定量诊断方法[J/OL]. 西南交通大学学报,1-8[2025-02-17]. http://kns.cnki.net/kcms/detail/51.1277.U.20240614.1318.006.html.

    LI Zhiqiang, LIU Yuan, LI Bin, et al. A rapid quantitative diagnosis method for early internal short circuit of lithium-ion battery packs under float charging conditions [J/OL]. Journal of Southwest Jiaotong University, 1-8 [2025-02-17]. http://kns.cnki.net/kcms/detail/51.1277.U.20240614.1318.006.html.
    [9]
    RAMASUBRAMANIAN A, YURKIV V, FOROOZAN T, et al. Lithium diffusion mechanism through solid–electrolyte interphase in rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10237-10245. doi: 10.1021/acs.jpcc.9b00436
    [10]
    MU W Y, LIU X L, WEN Z, et al. Numerical simulation of the factors affecting the growth of lithium dendrites[J]. Journal of Energy Storage, 2019, 26: 100921.1-100921.10.
    [11]
    VERMA P, PURAVANKARA S, NANDANWAR M N, et al. Insights into the morphological evolution of mossy dendrites in lithium metal symmetric and full cell: a modelling study[J]. Journal of the Electrochemical Society, 2023, 170(3): 030529.1-030529.11.
    [12]
    CHENG F, HU Y, ZHAO L X. Analysis of weak solutions for the phase-field model for lithium-ion batteries[J]. Applied Mathematical Modelling, 2020, 78: 185-199. doi: 10.1016/j.apm.2019.09.048
    [13]
    REN Y, ZHOU Y, CAO Y. Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling[J]. The Journal of Physical Chemistry C, 2020, 124(23): 12195-12204. doi: 10.1021/acs.jpcc.0c01116
    [14]
    ARGUELLO M E, GUMULYA M, DERKSEN J, et al. Phase-field modeling of planar interface electrodeposition in lithium-metal batteries[J]. Journal of Energy Storage, 2022, 50: 104627.1-104627.13.
    [15]
    JING H X, XING H, DONG X L, et al. Nonlinear phase-field modeling of lithium dendritic growth during electrodeposition[J]. Journal of the Electrochemical Society, 2022, 169(3): 032511.1-032511.6.
    [16]
    MONROE C, NEWMAN J. Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions[J]. Journal of the Electrochemical Society, 2003, 150(10): A1377.1-A1377.8.
    [17]
    GUYER J E, BOETTINGER W J, WARREN J A, et al. Phase field modeling of electrochemistry Ⅰ: equilibrium[J]. Physical Review E, 2004, 69(2): 021603.1-021603.13.
    [18]
    CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. doi: 10.1016/j.jpowsour.2015.09.055
    [19]
    ZHANG R, SHEN X, CHENG X B, et al. The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation?[J]. Energy Storage Materials, 2019, 23: 556-565. doi: 10.1016/j.ensm.2019.03.029
    [20]
    MCDOWELL M T, CORTES F J Q, THENUWARA A C, et al. Toward high-capacity battery anode materials: chemistry and mechanics intertwined[J]. Chemistry of Materials, 2020, 32(20): 8755-8771. doi: 10.1021/acs.chemmater.0c02981
    [21]
    TANG Y F, ZHANG L Q, CHEN J Z, et al. Electro-chemo-mechanics of lithium in solid state lithium metal batteries[J]. Energy & Environmental Science, 2021, 14(2): 602-642.
    [22]
    WANG M J, KAZYAK E, DASGUPTA N P, et al. Transitioning solid-state batteries from lab to market: Linking electro-chemo-mechanics with practical considerations[J]. Joule, 2021, 5(6): 1371-1390. doi: 10.1016/j.joule.2021.04.001
    [23]
    朱迎迎,王勇,徐淼,等. 追踪锂金属负极的压力与形貌变化[J]. 物理化学学报,2023,39(1): 77-84.

    ZHU Yingying, WANG Yong, XU Miao, et al. Tracking pressure changes and morphology evolution of lithium metal anodes[J]. Acta Physico-Chimica Sinica, 2023, 39(1): 77-84.
    [24]
    SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Advanced Energy Materials, 2021, 11(10): 2003416.1-2003416.9.
    [25]
    ZHANG X, WANG Q J, HARRISON K L, et al. Pressure-driven interface evolution in solid-state lithium metal batteries[J]. Cell Reports Physical Science, 2020, 1(2): 100012.1-100012.19.
    [26]
    罗崇亮,余云燕,张璟,等. 硫酸盐渍土热-质迁移试验与耦合模型[J]. 西南交通大学学报,2023,58(2): 470-478.

    LUO Chongliang, YU Yunyan, ZHANG Jing, et al. Heat-mass transfer test and coupling model of sulfate saline soil[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 470-478.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(1)

    Article views(68) PDF downloads(7) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return