Loading [MathJax]/jax/output/SVG/jax.js
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHENG Jing, HE Jiaxin, LEI Lei, YANG Dan, HUANG Yuanbao, ZHANG Erqing, ZHANG Chening. Damage Failure of Two Alloy Seal Rings Paired with Impregnated Graphite[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 411-417. doi: 10.3969/j.issn.0258-2724.20220641
Citation: XIA Dongtao, WU Chen, CUI Kai, WU Fanghong, LI Biao, WANG Yu, YU Shiting, LI Yaowei. Effect of Fly Ash and Silica Fume Contents on Mechanical Properties of Alkali-Activated Slag-Based Concrete[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1113-1122. doi: 10.3969/j.issn.0258-2724.20230036

Effect of Fly Ash and Silica Fume Contents on Mechanical Properties of Alkali-Activated Slag-Based Concrete

doi: 10.3969/j.issn.0258-2724.20230036
  • Received Date: 06 Feb 2023
  • Rev Recd Date: 22 Aug 2023
  • Available Online: 05 Aug 2024
  • Publish Date: 28 Sep 2023
  • In order to study the effect of fly ash and silica fume contents on the properties of alkali-activated slag-based concrete (AASC), the changes in setting time, cubic compressive strength, cubic splitting tensile strength, flexural strength, and elastic modulus of AASC were investigated by conducting tests on setting time and basic mechanical properties. Based on the test results, a regression analysis method was used to establish the conversion relationship equation of cubic splitting tensile strength, flexural strength, and elastic modulus with cubic compressive strength, and the effect of fly ash and silica fume on the properties of AASC was revealed according to the microstructure and phase composition. The results show that the fly ash and silica fume can prolong the setting time of AASC; the mechanical property indicators of AASC tend to strengthen and then weaken with the increase in the contents of fly ash and silica fume, and the optimal contents of fly ash and silica fume are 20% and 10%, respectively. The proposed empirical formulae for cubic splitting tensile strength, flexural strength, and elastic modulus of AASC have a high fitting precision. The appropriate contents of fly ash (silica fume≤20%) and silica fume (silica fume≤10%) can promote the hydration reaction of AASC and the denser microstructures.

     

  • 机械密封是一种防止流体泄漏的装置,由至少一对垂直于旋转轴线的端面组成,在流体压力和补偿机构弹力(或磁力)的作用下,以及辅助密封的配合下,保持贴合并相对滑动[1]. 密封环是机械密封中最主要的元件之一,直接影响机械密封设备的性能和使用寿命[2-3]. 随着核电、石油化工、国防、深海勘探和太空探索等领域应用的迅速发展,密封环材料必须具备耐腐蚀、耐磨损、耐高/低温、强度高和导热性好等特性,以确保密封系统的平稳运行[4-8].

    为延长密封环的服役寿命,通常选用高硬度、高强度以及摩擦学性能优异的材料. 目前,工业中常用的密封环材料有石墨、硬质合金(多为WC-Co和WC-Ni)和工程陶瓷(Si3N4、SiC、WC等)[9-15]. 某公司页岩气石油化工泵使用国外进口Cr合金密封环,与浸渍石墨密封环配副,构成单端面密封装置,运用在化工泵一回路系统中. 该机械密封装置采用油雾润滑,服役温度300~400 ℃,端面接触应力0.2 MPa,密封介质为页岩气. 在实际使用中,该密封装置的密封性能良好,长时间服役后的气体泄漏量仍然保持在允许范围以内,在定期检测中发现密封环端面出现明显环状磨斑,停止使用. 随后,换用国内某公司生产的YG-6硬质合金密封环与全新浸渍石墨密封环配副使用,短期运行后,硬质合金密封环端面无明显磨损,但在动静环接触区出现2处块状缺损,导致机械密封失效,气体泄漏. 为探究2种合金密封环服役性能差异的缘由,本文通过表面形貌、化学成分和力学性能表征分析,研究2种密封环的失效机制,旨在为密封环材料选择提供参考.

    试验材料为某公司提供的页岩气石油化工泵上服役失效的Cr合金密封环、YG-6硬质合金密封环以及与Cr合金密封环配副的浸渍石墨密封环. 与硬质合金密封环配副的浸渍石墨密封环未出现明显损伤,仍在正常使用. 其中,Cr合金密封环与浸渍石墨密封环的加工工艺和化学成分等未知,YG-6硬质合金密封环通过粉末烧结法制成,材质为WC-Co合金,WC质量分数为94%,Co质量分数为6%. 图1为密封装置结构示意和2种合金密封环照片.

    图  1  密封装置结构示意和密封环实体图
    Figure  1.  Sealing device and seal rings

    厂家要求浸渍石墨密封环需返厂继续使用,因此,采用无水乙醇超声处理清除浸渍石墨密封环表面油渍后,通过VK-X1000型激光共聚焦显微镜(LCSM)对其表面形貌进行无损观察. 2种合金密封环的处理方法如下:首先,使用线切割机沿图2所示黑色虚线对2种合金密封环进行切割,根据切割位置从左至右依次编号为Cr合金密封环试样1-1、1-2、1-3、1-4、1-5、1-6和硬质合金密封环试样2-1、2-2、2-3、2-4、2-5;将切割样块置于装有无水乙醇的烧杯中超声清洗10 min后,使用树脂对试样1-1、1-2、1-3、1-4、1-5和试样2-1、2-2、2-3、2-4进行包埋,试样1-5横截面朝上,其余均为工作面朝上;包埋样块经400#、800#、1500#、2000#、3000#砂纸逐级打磨后,依次用5.0、2.5、1.0、0.5 μm的金刚石抛光膏抛光,经无水乙醇超声清洗后晾干备用.

    图  2  2种合金密封环切割示意
    Figure  2.  Cutting of two alloy seal rings

    对试样1-6、2-5和浸渍石墨密封环的表面形貌进行LCSM观察分析;利用Apreo 2C型扫描电子显微镜(SEM)和ULTIM Max65型能谱仪(EDS)对试样1-4、1-5、2-5进行微观形貌与化学成分分析;采用Empyrean Alpha 1型X射线能谱仪(XRD)对试样1-4进行物相分析;使用LabRAM HR高分辨拉曼光谱仪对试样1-4、2-5表面进行分析表征;通过μ-x360n型便携式残余应力分析仪对试样1-6、2-5表面进行测试分析. 此外,在Agilent G200型纳米压痕仪上使用曲率半径20 nm的Berkovich金刚石针尖对试样1-1、2-1进行弹性模量测试,施加法向载荷5 mN,每个试样表面测量5个值,压痕间距大于100 μm;在HV-50型维氏硬度仪上对试样1-1、1-2、1-3、2-1、2-2、2-3进行维氏硬度测试,载荷294 N,每个试样表面测量10个值,压痕间距大于400 μm;测量压痕顶角裂纹长度,以计算试样断裂韧性KIC,如式(1)所示[16].

    KIC=0.0028HP/l, (1)

    式中:l为压痕顶角处4条裂纹的总长,P为测试载荷,H为在载荷P下试样的维氏硬度值.

    Cr合金与浸渍石墨密封环端面环形磨斑形貌LCSM照片如图3所示. 图中,红色框和绿色框分别为对应位置的放大图,余图同. 由图3(a)Cr合金密封环端面环形磨斑形貌LCSM照片可以看出,环形磨斑宽约2.4 mm,表面呈现轻微犁削效应,这表明Cr合金密封环在服役过程中端面发生轻微磨粒磨损. 值得注意的是,Cr合金密封环端面未磨损区域光洁度较差,表面粗糙度为(0.219±0.005) μm,磨损区域表面粗糙度显著降低,为(0.026±0.002) μm. 如图3(b)所示,对偶件浸渍石墨密封环端面也出现宽约2.2 mm的环形磨斑,磨斑表面存在随机分布、形状不一的剥落坑,其中,未磨损区域的表面粗糙度为(0.087±0.009) μm,磨损区域表面粗糙度略有降低,为(0.077±0.004) μm.

    图  3  Cr合金与浸渍石墨密封环端面环形磨斑形貌LCSM照片
    Figure  3.  LCSM images of annular wear scars on end faces of Cr alloy and impregnated graphite seal rings

    硬质合金密封环端面缺损形貌如图4所示. 由图4(a) LCSM照片可以看出,硬质合金密封环端表面平整,表面粗糙度为(0.041±0.003) μm,动静环接触区域无明显磨损,但出现块状缺损;块状缺损表面平整、颜色均匀、组织细致,周边没有出现明显的塑形变形. 高倍数SEM形貌照片显示,缺损处WC颗粒表面光滑,呈现出多面体的“冰糖状”形貌,这是典型的沿晶界断裂特征[17]. 需要指出的是,按照厂家提供的信息,与硬质合金密封环配副的浸渍石墨密封环表面无明显损伤.

    图  4  硬质合金密封端面环缺损形貌
    Figure  4.  Morphologies of end-face defects of cemented carbide seal ring

    如前所述,Cr合金密封环为国外进口,加工工艺、元素组成和物相结构等信息均未知. 因此,本文对Cr合金密封环进行了EDS元素分析与XRD物相分析. 图5(a)密封环截面EDS面扫结果显示,该密封环材质包含Fe、Cr和C 3种元素,各元素均匀分布. 图5(b)密封环表面XRD图谱显示,衍射角2θ=44.5°,64.5°,82.0°,98.4° 处分别出现马氏体特征晶面(110)、(200)、(211)、(220)衍射峰,2θ=42.0°,51.1°,76.2°,90.4° 处分别出现奥氏体特征晶面(111)、(200)、(220)、(331)衍射峰,奥氏体出峰低,而马氏体特征峰强而尖锐,图谱中未发现碳化物特征峰. 图6为Cr合金密封环表面EDS图谱与拉曼图谱. 图中:Wt为质量分数,At为原子数量百分数. 可以看到,相比未磨损区域,磨损区域的C元素含量明显增加,拉曼光谱上出现了位于1350 cm−11580 cm−1处的石墨特征峰(D峰与G峰),这可能源于对偶件浸渍石墨密封环表面脱落下来的石墨颗粒. 综上,国外进口密封环材质为含Cr的马氏体钢,未经渗氮、渗碳等表面强化处理,其在服役过程中未出现氧化腐蚀现象,磨损表面存在对偶件材料转移.

    图  5  Cr合金密封环元素与物相分析
    Figure  5.  Element and phase analysis of Cr alloy seal ring
    图  6  Cr合金密封环表面EDS图谱与拉曼图谱
    Figure  6.  EDS spectrums and Raman spectrums of Cr alloy seal ring surface

    图7为硬质合金密封环表面EDS图谱与拉曼图谱. 可以看到,密封环表面元素组成为W、C、O、Co,缺损表面的O元素含量明显增加,W元素含量降低. 拉曼光谱显示,相比未缺损表面,缺损表面出现了高硬度脆性氧化物CoWO4、WO3、Co3O4的特征峰. 结果表明,硬质合金密封环接触区域的块状缺损可能源于材料氧化腐蚀诱导的脆性开裂.

    图  7  硬质合金密封环表面EDS图谱与拉曼图谱
    Figure  7.  EDS spectrums and Raman spectrums of cemented carbide seal ring surface

    为考察材料力学性能对密封环服役特性的影响并证实硬质合金密封环表面发生氧化脆化,采用压痕法测试2种合金密封环表面的力学性能,并与厂家和文献提供的数据进行了对比. Cr合金密封环的表面硬度和弹性模量分别为(629.8±14.2) HV30和(244.7±17.4) GPa,显著低于硬质合金密封环;硬质合金密封环表面硬度与弹性模量分别为(1475.3±60.1) HV30和(815.3±57.2) GPa,均大于厂家提供的YG-6硬质合金材料表面硬度(1285±65) HV30与弹性模量(630±50) GPa,这与硬质合金密封环表面新生成的高硬度脆性氧化物有关. 图8为2种合金密封环表面断裂韧性测试的压痕形貌LCSM照片. Cr合金密封环表面压痕边缘未出现裂纹,硬质合金密封环表面压痕尖端出现裂纹,将测量的裂纹长度带入式(1),计算得到密封环表面断裂韧性约为5.94 MPa·m1/2,低于文献报道的YG-6硬质合金材料断裂韧性(8~20 MPa·m1/2[18-19]. 可见,Cr合金密封环表面刚度较低,但具有较好的断裂韧性,密封环端表面在服役过程中发生磨损,但不会发生脆性破坏;而硬质合金密封环在服役过程中发生了材料氧化脆化,导致表面弹性模量和硬度增大、断裂韧性降低,因此密封环端表面虽然没有发生明显磨损,但接触区域发生开裂缺损.

    图  8  2种密封环表面维氏压痕形貌LCSM照片
    Figure  8.  LCSM images of Vickers indentations on two seal rings

    通常,加工等原因会导致工件或结构表面存在残余应力,外部载荷和残余应力的耦合作用可能造成工件提前失效[20]. 图9为2种合金密封环表面残余应力检测结果. 2种失效密封环端面的残余应力均为压应力,其中,Cr合金密封环端面磨损区域的残余应力略大于未磨损区域的,硬质合金密封环端面缺损处的残余应力显著低于未磨损区域. 显然,硬质合金密封环表面存在较大的残余应力.

    图  9  2种密封环表面残余应力
    Figure  9.  Surface residual stress of two seal rings

    浸渍石墨是一类用树脂、金属和无机盐等材料填塞石墨表面和内部空隙得到的材料[21-22],表面粗糙,厂家提供的表面硬度值为(680±30) HV30,远大于Cr合金密封环. 因此,当Cr合金密封环与浸渍石墨密封环配副使用时,一旦浸渍材料或空隙遭到破坏,石墨基体容易发生片层状或者块状磨损脱落,并在摩擦界面充当第三体[23-24],导致Cr合金密封环端面发生磨粒磨损. 需要指出的是,石墨材料通常具有良好的自润滑性能,在服役过程中界面摩擦系数会长时间保持在较低值,导致Cr合金密封环与浸渍石墨密封环的接触区域虽然发生磨粒磨损,但磨损表面存在打磨抛光行为(图2),表面粗糙度显著降低,这有利于Cr合金密封环与浸渍石墨密封环紧密贴合. 因此,尽管较低的材料刚度导致Cr合金密封环在服役过程中产生表面磨损,但泵体仍能保持良好的密封性能.

    YG-6硬质合金密封环材质为WC-Co合金,通过粉末烧结法制成. 由于WC与Co的热膨胀系数相差较大,硬质合金工件内部WC相与Co相之间存在很大的残余应力,这会导致WC/Co相间萌生微裂纹,诱使工件在服役过程中发生断裂失效[25]. 如图9所示,硬质合金密封环表面存在较大残余应力,高残余应力很可能是其接触区域发生破损的诱因之一. 值得注意的是,对比厂家和文献[15-18]提供的YG-6硬质合金材料力学性能,YG-6硬质合金失效密封环的表面硬度和弹性模量增大、断裂韧性降低,而且密封环端面缺损处的O元素含量也明显增加,并出现高硬度脆性氧化物CoWO4、WO3和Co3O4的拉曼特征峰(图7). 据报道,WC-Co硬质合金中的W元素在超过300 ℃的高温下易被氧化,生成多孔和具有裂纹的WO3[26],O元素通过生成的孔和裂纹进入到材料内部,进一步诱发作为黏结相和增韧剂的Co元素被氧化,生成CoWO4和C6WO6等脆性较高、硬度较大的氧化物,从而导致硬质合金硬度与弹性模量增大、断裂韧性降低[27]. 如前所述,硬质合金密封环的服役温度为300~400 ℃,其与浸渍石墨密封环配副保持高速运转,接触区域温度更高,且伴随振动. 可见,高硬度和高刚度导致硬质合金密封环与浸渍石墨密封环配副使用时不易发生表面磨损,然而,高残余应力会诱发YG-6硬质合金密封环内部微裂纹萌生,同时,高温服役环境下YG-6硬质合金密封环发生氧化腐蚀诱导材料脆化,这2种因素共同作用导致硬质合金密封环接触区域在冲击应力作用下发生开裂破坏,引发泵体密封失效.

    机械密封能否达到预期效果,密封环的选材具有决定性作用[28]. 密封环端面磨损是机械密封最常见的失效形式,为延长机械密封装置的服役寿命,目前多选用刚度高、耐磨性好的硬质合金、工程陶瓷等材料制造密封环. 研究结果显示,高硬度和高刚度的WC-Co硬质合金虽然具有优异的耐磨性,但工件表面残余应力高,且在高温环境下会发生氧化腐蚀、断裂韧性下降. 因此,YG-6硬质合金密封环短期使用后动静环接触区域便出现开裂破坏,导致泵体密封失效. 与YG-6硬质合金密封环相比,刚度较低的Cr合金密封环耐磨性不佳,但磨损表面存在的打磨抛光行为使得其与配副密封环保持紧密贴合,有助于泵体保持良好的密封性能. 因此,在相同工况下Cr合金密封环的服役时间远大于YG-6硬质合金密封环的. 然而,从泵体运行角度考虑,密封环端面磨损是不可忽视的安全隐患. 综上,为实现密封环长效服役,密封环的材料选择应该从服役工况出发,综合考虑材料的刚度、韧性、耐磨性和耐候性.

    1) 进口合金密封环材质为含Cr的马氏体钢,未经渗氮、渗碳等表面强化处理;在服役过程中,密封环表面没有氧化腐蚀现象,接触区发生磨粒磨损,但磨损表面存在打磨抛光行为,有助于泵体保持良好的密封性能.

    2) YG-6硬质合金密封环表面残余应力高,且在高温服役环境下发生氧化腐蚀诱发材料脆化,其动静环接触区容易发生开裂破坏,导致泵体密封失效.

    3) 密封环的材料选择应该从服役工况出发,综合考虑材料的刚度、韧性、耐磨性和耐候性,以实现长效服役.

  • [1]
    DING Y, DAI J G, SHI C J. Mechanical properties of alkali-activated concrete: a state-of-the-art review[J]. Construction and Building Materials, 2016, 127: 68-79. doi: 10.1016/j.conbuildmat.2016.09.121
    [2]
    MOHAMED O A. A review of durability and strength characteristics of alkali-activated slag concrete[J]. Materials, 2019, 12(8): 1198.1-1198.19.
    [3]
    顾亚敏,方永浩. 碱矿渣水泥的收缩与开裂特性及其减缩与增韧[J]. 硅酸盐学报,2012,40(1): 76-84.

    GU Yamin, FANG Yonghao. Shrinkage, cracking, shrinkage-reducing and toughening of alkali-activated slag cement—a short review[J]. Journal of the Chinese Ceramic Society, 2012, 40(1): 76-84.
    [4]
    GAO X, YU Q L, BROUWERS H J H. Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model[J]. Construction and Building Materials, 2016, 119: 175-184. doi: 10.1016/j.conbuildmat.2016.05.026
    [5]
    RAMEZANIANPOUR A A, MOEINI M A. Mechanical and durability properties of alkali activated slag coating mortars containing nanosilica and silica fume[J]. Construction and Building Materials, 2018, 163: 611-621. doi: 10.1016/j.conbuildmat.2017.12.062
    [6]
    SUN B B, SUN Y B, YE G, et al. A mix design methodology of slag and fly ash-based alkali-activated paste[J]. Cement and Concrete Composites, 2022, 126: 104368.1-104368.15.
    [7]
    SUN Y B, LIU Z Y, GHORBANI S, et al. Fresh and hardened properties of alkali-activated slag concrete: the effect of fly ash as a supplementary precursor[J]. Journal of Cleaner Production, 2022, 370: 133362.1-133362.12.
    [8]
    ROSTAMI M, BEHFARNIA K. The effect of silica fume on durability of alkali activated slag concrete[J]. Construction and Building Materials, 2017, 134: 262-268. doi: 10.1016/j.conbuildmat.2016.12.072
    [9]
    中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程:JGJ 55—2011[S]. 北京:中国建筑工业出版社,2011.
    [10]
    LI N, SHI C J, ZHANG Z H, et al. A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete[J]. Cement and Concrete Composites, 2018, 93: 163-174. doi: 10.1016/j.cemconcomp.2018.07.009
    [11]
    BONDAR D, NANUKUTTAN S, PROVIS J L, et al. Efficient mix design of alkali activated slag concretes based on packing fraction of ingredients and paste thickness[J]. Journal of Cleaner Production, 2019, 218: 438-449.

    BONDAR D,NANUKUTTAN S,PROVIS J L,et al. Efficient mix design of alkali activated slag concretes based on packing fraction of ingredients and paste thickness[J]. Journal of Cleaner Production,2019,218:438-449.
    [12]
    中华人民共和国住房和城乡建设部,国家市场监督管理总局. 混凝土物理力学性能试验方法标准:GB/T 50081—2019[S]. 北京:中国建筑工业出版社,2019.
    [13]
    中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准:GB/T 50080—2016[S]. 北京:中国建筑工业出版社,2017.
    [14]
    刘翼玮,张祖华,史才军,等. 硅灰对高强地聚物胶凝材料性能的影响[J]. 硅酸盐学报,2020,48(11): 1689-1699.

    LIU Yiwei, ZHANG Zuhua, SHI Caijun, et al. Influence of silica fume on performance of high-strength geopolymer[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1689-1699.
    [15]
    DONG M H, ELCHALAKANI M, KARRECH A. Development of high strength one-part geopolymer mortar using sodium metasilicate[J]. Construction and Building Materials, 2020, 236: 117611.1-117611.13.
    [16]
    LIU G, FLOREA M V A, BROUWERS H J H. Characterization and performance of high volume recycled waste glass and ground granulated blast furnace slag or fly ash blended mortars[J]. Journal of Cleaner Production, 2019, 235: 461-472. doi: 10.1016/j.jclepro.2019.06.334
    [17]
    KUMAR S, KUMAR R, MEHROTRA S P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer[J]. Journal of Materials Science, 2010, 45(3): 607-615. doi: 10.1007/s10853-009-3934-5
    [18]
    张雄,张恒,张晓乐,等. 硅灰调控混凝土力学性能的关键界面参数研究[J]. 建筑材料学报,2019,22(4): 626-631. doi: 10.3969/j.issn.1007-9629.2019.04.018

    ZHANG Xiong, ZHANG Heng, ZHANG Xiaole, et al. Key interface parameters for the control of silica fume on mechanical properties of concrete[J]. Journal of Building Materials, 2019, 22(4): 626-631. doi: 10.3969/j.issn.1007-9629.2019.04.018
    [19]
    万小梅,张宇,赵铁军,等. 碱激发矿渣混凝土的力学性能[J]. 材料导报,2018,32(12): 2091-2095. doi: 10.11896/j.issn.1005-023X.2018.12.028

    WAN Xiaomei, ZHANG Yu, ZHAO Tiejun, et al. Mechanical properties of alkali-activated slag concrete[J]. Materials Reports, 2018, 32(12): 2091-2095. doi: 10.11896/j.issn.1005-023X.2018.12.028
    [20]
    LEE N K, LEE H K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature[J]. Construction and Building Materials, 2013, 47: 1201-1209. doi: 10.1016/j.conbuildmat.2013.05.107
    [21]
    CONG X Y, ZHOU W, ELCHALAKANI M. Experimental study on the engineering properties of alkali-activated GGBFS/FA concrete and constitutive models for performance prediction[J]. Construction and Building Materials, 2020, 240: 117977.1-117977.22.
    [22]
    李升涛,陈徐东,张伟,等. 基于长江下游超细疏浚砂的碱激发矿渣混凝土力学性能[J]. 复合材料学报,2022,39(1): 335-343.

    LI Shengtao, CHEN Xudong, ZHANG Wei, et al. Mechanical properties of alkali activated slag concrete with ultra fine dredged sand from Yangtze River[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 335-343.
    [23]
    ALIABDO A A, ABD ELMOATY A E M, EMAM M A. Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete[J]. Construction and Building Materials, 2019, 197: 339-355. doi: 10.1016/j.conbuildmat.2018.11.086
    [24]
    FANG G H, HO W K, TU W L, et al. Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature[J]. Construction and Building Materials, 2018, 172: 476-487. doi: 10.1016/j.conbuildmat.2018.04.008
    [25]
    SAJJAD U, SHEIKH M N, HADI M N S. Incorporation of graphene in slag-fly ash-based alkali-activated concrete[J]. Construction and Building Materials, 2022, 322: 126417.1-126417.12.
    [26]
    张兰芳. 碱激发复合渣体(AAW)混凝土的性能研究[D]. 重庆:重庆大学,2006.
    [27]
    BERNAL S A, DE GUTIÉRREZ R M, PROVIS J L. Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends[J]. Construction and Building Materials, 2012, 33: 99-108. doi: 10.1016/j.conbuildmat.2012.01.017
    [28]
    黄华,郭梦雪,张伟,等. 粉煤灰-矿渣基地聚物混凝土力学性能与微观结构[J]. 哈尔滨工业大学学报,2022,54(3): 74-84. doi: 10.11918/202104058

    HUANG Hua, GUO Mengxue, ZHANG Wei, et al. Mechanical property and microstructure of geopolymer concrete based on fly ash and slag[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 74-84. doi: 10.11918/202104058
    [29]
    RAKHIMOVA N R, RAKHIMOV R Z. Hydrated Portland cement as an admixture to alkali-activated slag cement[J]. Advances in Cement Research, 2015, 27(2): 107-117.
    [30]
    费建刚,袁晓辉,申晓伟,等. 碱矿渣混凝土基本力学性能试验研究[J]. 信阳师范学院学报(自然科学版),2017,30(3): 484-488. doi: 10.3969/j.issn.1003-0972.2017.03.029

    FEI Jiangang, YUAN Xiaohui, SHEN Xiaowei, et al. Experimental study on basic mechanical properties of alkali-activated slag concrete[J]. Journal of Xinyang Normal University (Natural Science Edition), 2017, 30(3): 484-488. doi: 10.3969/j.issn.1003-0972.2017.03.029
    [31]
    郝烜宁. 碱-矿渣混凝土缓凝技术研究[D]. 哈尔滨:哈尔滨工业大学,2021.
    [32]
    武永焱,明鑫,范小春. 无机聚合物海砂混凝土基本力学性能试验研究[J]. 武汉理工大学学报,2019,41(5): 71-78.

    WU Yongyan, MING Xin, FAN Xiaochun. Experimental study on basic mechanical properties of inorganic polymer sea sand concrete[J]. Journal of Wuhan University of Technology, 2019, 41(5): 71-78.
    [33]
    AIKEN T A, KWASNY J, SHA W, et al. Mechanical and durability properties of alkali-activated fly ash concrete with increasing slag content[J]. Construction and Building Materials, 2021, 301: 124330.1-124330.17.
    [34]
    NATH P, SARKER P K. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete[J]. Construction and Building Materials, 2017, 130: 22-31. doi: 10.1016/j.conbuildmat.2016.11.034
    [35]
    GAO X, YU Q L, BROUWERS H J H. Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag-fly ash blends[J]. Construction and Building Materials, 2015, 80: 105-115. doi: 10.1016/j.conbuildmat.2015.01.065
    [36]
    李亚杰,方坤河. 建筑材料[M]. 6版. 北京: 中国水利水电出版社,2009:97.
    [37]
    DUAN P, YAN C J, ZHOU W. Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle[J]. Cement and Concrete Composites, 2017, 78: 108-119. doi: 10.1016/j.cemconcomp.2017.01.009
    [38]
    黄燕,胡翔,史才军,等. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报,2023,37(1): 102-113.

    HUANG Yan, HU Xiang, SHI Caijun, et al. Review on the formation and improvement of interfacial transition zone between cement paste and aggregate in concrete[J]. Materials Reports, 2023, 37(1): 102-113.
    [39]
    NEDELJKOVIĆ M, LI Z M, YE G. Setting, strength, and autogenous shrinkage of alkali-activated fly ash and slag pastes: effect of slag content[J]. Materials, 2018, 11(11): 2121.1-2121.20. doi: 10.3390/ma11112121
    [40]
    姚力豪,王彦平,陈昶旭,等. 硅灰对粉煤灰-矿渣基地聚物性能的影响[J]. 新型建筑材料,2022,49(5): 48-52. doi: 10.3969/j.issn.1001-702X.2022.05.012

    YAO Lihao, WANG Yanping, CHEN Changxu, et al. Effect of silica fume on properties of fly ash-slag based geopolymer[J]. New Building Materials, 2022, 49(5): 48-52. doi: 10.3969/j.issn.1001-702X.2022.05.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article views(331) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return