• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
FENG Xingle, ZHANG Haiou, LI Wei, LIU Yamin, ZHANG Shaoyang. Texture Depth Measured Method of Pavement Based on Static and Dynamic Anti-Sliding Characteristics[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 620-627. doi: 10.3969/j.issn.0258-2724.20180282
Citation: ZHOU Ji, CHEN Zongping, TANG Jiyu, CHEN Yuliang. Time Variation of Mechanical Properties of Ultra-High Pumped Self-Compacting Concrete Within One Year of Age[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1175-1183. doi: 10.3969/j.issn.0258-2724.20200746

Time Variation of Mechanical Properties of Ultra-High Pumped Self-Compacting Concrete Within One Year of Age

doi: 10.3969/j.issn.0258-2724.20200746
  • Received Date: 03 Nov 2020
  • Rev Recd Date: 28 Feb 2021
  • Available Online: 08 Aug 2022
  • Publish Date: 02 Mar 2021
  • In order to reveal the time-varying laws of the axial compressive strength, elastic modulus and splitting tensile strength of the pumped self-compacting concrete (SCC) in super high-rise buildings during the construction period, and to provide a basis for mechanical performance analysis of super high-rise buildings in construction stage, 120 specimens, including 96 cylindrical specimens and 24 cube specimens, were fabricated by pumping the SCC of a high-rise building over 400 m, their mechanical properties were tested at different ages, and the stress-strain curves of the ultra-high pumped SCC were obtained. Based on the tested results, formulas for calculating the time-varying relationship of the mechanical properties were proposed. The results show that the ultra-high pumped SCC has good compactness under vibration-free conditions. With the increase of age, the peak stress of the ultra-high pumped SCC increases, and the peak strain is significantly greater than that of ordinary concrete. The period of early 14 d is the key stage for the growth of various properties; the elastic modulus tends to stabilize after 90 d, while the axial compressive strength and split tensile strength still increase significantly after 28 d. When the age T ≤ 60 d, the axial compressive stiffness of the ultra-high pumped SCC increases with time, while the relative toughness decreases. When T > 60 d, both of them change little and tend to be stable. The improvement of strength of the pumped SCC in super high-rise buildings can accelerate the development of its early performance, and increase the axial compressive stiffness and relative toughness. The proposed calculation formulas of time-varying mechanical properties can provide a reliable basis for prediction and evaluation of mechanical performance of the pumped SCC in super high-rise buildings.

     

  • [1]
    KAMAL M M, SAFAN M A, BASHANDY A A, et al. Experimental investigation on the behavior of normal strength and high strength self-curing self-compacting concrete[J]. Journal of Building Engineering, 2018, 16: 79-93. doi: 10.1016/j.jobe.2017.12.012
    [2]
    刘运华,谢友均,龙广成. 自密实混凝土研究进展[J]. 硅酸盐学报,2007,35(5): 671-678. doi: 10.3321/j.issn:0454-5648.2007.05.028

    LIU Yunhua, XIE Youjun, LONG Guangcheng. Progress of research on self-compacting concrete[J]. Journal of the Chinese Ceramic Society, 2007, 35(5): 671-678. doi: 10.3321/j.issn:0454-5648.2007.05.028
    [3]
    HAZAREE C, MAHADEVAN V. Single stage concrete pumping through 2.432 km (1.51 miles): weather and execution challenges[J]. Case Studies in Construction Materials, 2015, 3: 56-69. doi: 10.1016/j.cscm.2015.05.001
    [4]
    TAN Y Q, ZHANG H, YANG D M, et al. Numerical simulation of concrete pumping process and investigation of wear mechanism of the piping wall[J]. Tribology International, 2012, 46(1): 137-144.
    [5]
    ROZIÈRE E, GRANGER S, TURCRY P, et al. Influence of paste volume on shrinkage cracking and fracture properties of self-compacting concrete[J]. Cement and Concrete Composites, 2007, 29(8): 626-636. doi: 10.1016/j.cemconcomp.2007.03.010
    [6]
    ZHAO Y, MA J, WU Z, et al. Study on fracture properties of self-compacting concrete using wedge splitting test[C]//Proceedings of the 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete. Paris: RILEM Publication SARL, 2005: 421-428
    [7]
    OMRANE M, KENAI S, KADRI E H, et al. Performance and durability of self-compacting concrete using recycled concrete aggregates and natural pozzolan[J]. Journal of Cleaner Production, 2017, 165: 415-430. doi: 10.1016/j.jclepro.2017.07.139
    [8]
    SANTOS S, DA SILVA P R, DE BRITO J. Self-compacting concrete with recycled aggregates-A literature review[J]. Journal of Building Engineering, 2019, 22: 349-371. doi: 10.1016/j.jobe.2019.01.001
    [9]
    ZHU W Z, BARTOS P J M. Permeation properties of self-compacting concrete[J]. Cement and Concrete Research, 2003, 33(6): 921-926. doi: 10.1016/S0008-8846(02)01090-6
    [10]
    元强,李白云,史才军,等. 混凝土泵送性能的流变学表征及预测综述[J]. 材料导报,2018,32(17): 2976-2985. doi: 10.11896/j.issn.1005-023X.2018.17.011

    YUAN Qiang, LI Baiyun, SHI Caijun, et al. An overview on the prediction and rheological characterization of pumping concrete[J]. Materials Review, 2018, 32(17): 2976-2985. doi: 10.11896/j.issn.1005-023X.2018.17.011
    [11]
    中华人民共和国建设部, 国家质量监督检验检疫总局. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.
    [12]
    LI L, HWANG C L. Analysis on the stress-strain behavior of self-consolidating concrete[C]//SCC2005-China: 1st International Symposium on Design, Performance and Use of Self-Consolidating Concrete. [S.l.]: RILEM Publications SARL, 2005: 517-522.
    [13]
    朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京: 中国电力出版社, 2003.
    [14]
    TAERWE L. Fib model code for concrete structures 2010[M]. [S.l.]: Ernst & Sohn, Wiley, 2013.
    [15]
    杨久俊,刘俊霞,韩静宜,等. 大流动度超高强钢纤维混凝土力学性能研究[J]. 建筑材料学报,2010,13(1): 1-6. doi: 10.3969/j.issn.1007-9629.2010.01.001

    YANG Jiujun, LIU Junxia, HAN Jingyi, et al. Studies on mechanical property of high fluidity steel fiber reinforced ultra-high strength concrete[J]. Journal of Building Materials, 2010, 13(1): 1-6. doi: 10.3969/j.issn.1007-9629.2010.01.001
    [16]
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011.
    [17]
    赵军,高丹盈. 高性能自密实混凝土的力学及变形性能试验研究[J]. 中外公路,2006,26(2): 161-165. doi: 10.3969/j.issn.1671-2579.2006.02.045
    [18]
    王建新. 高性能自密实混凝土力学性能及抗冻性能研究[D]. 长春: 吉林大学, 2019.
    [19]
    NIKBIN I M, BEYGI M H A, KAZEMI M T, et al. A comprehensive investigation into the effect of aging and coarse aggregate size and volume on mechanical properties of self-compacting concrete[J]. Materials & Design, 2014, 59: 199-210.
  • Relative Articles

    [1]LIU Xiaokai, LIU Xueyi, XIAO Jieling, DONG Jiajia. Analysis of Internal forces and Damage of Broad-Narrow Joint of CRTS Slab Track Under Temperature Rise[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 273-280. doi: 10.3969/j.issn.0258-2724.20210946
    [2]ZHAO Weihua, CAO Yang. Influence of Nose Rail Reconstruction Profile Parameters Based on B-Spline Curve[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 264-272. doi: 10.3969/j.issn.0258-2724.20220693
    [3]WANG Min, HE Zhaoyi, ZHOU Wen, SONG Gang. Prediction Model for Water Film Thickness of Drainage Asphalt Pavement under Ultimate Rainfall Intensity[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230159
    [4]WANG Min, HE Zhaoyi, ZHOU Wen, LIANG Xin. Influencing Factors of Asphalt Pavement Visibility on Rainy Days[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1286-1293. doi: 10.3969/j.issn.0258-2724.20211079
    [5]CHEN Zui, LIU Xueyi, HU Ying, CAO Ruiheng, XIAO Jieling, YANG Rongshan. Fatigue Characteristic of High-Frequency Vibration for CRTS Track Slab[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 106-111, 119. doi: 10.3969/j.issn.0258-2724.20210030
    [6]ZHANG Pengfei, TU Jian, GUI Hao, LEI Xiaoyan, LIU Linya. Mechanical Properties of CRTS Slab Ballastless Track on Bridge under Temperature Gradient Loads[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 945-952. doi: 10.3969/j.issn.0258-2724.20200244
    [7]WU Chaoyang, JIANG Xin. Application Error of Traffic Speed Deflectometer for Asphalt Pavement Structure with Semi-Rigid Base[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1109-1115. doi: 10.3969/j.issn.0258-2724.20200247
    [8]QIU Yanjun, WANG Guolong, YANG Enhui, YU Xiaoli, WANG Chenping. Crack Detection of 3D Asphalt Pavement Based on Multi-feature Test[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 518-524. doi: 10.3969/j.issn.0258-2724.20180270
    [9]DING Shihai, YANG Enhui, WANG Chenping, JI Yaying, LEI Kaiyun, ZHANG Xinrui. Three-Dimensional High-Precision Laser Non-contact Detection of Asphalt Pavement Surface Texture[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 758-764. doi: 10.3969/j.issn.0258-2724.20181056
    [10]AI Changfa, XU Cheng, REN Dongya, GUO Yujin, YANG Enhui. Characterization of Vertical and Horizontal Propagations of Double Cracks in Asphalt Pavements under Moving Loads[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 128-135. doi: 10.3969/j.issn.0258-2724.2018.01.016
    [11]WU Yu, JIANG Xin, LIANG Xuejiao, FENG Wenqing. Mechanical Behaviours of Typical Asphalt Pavement Structures under Wheel Loads[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 563-570. doi: 10.3969/j.issn.0258-2724.2017.03.017
    [12]LIU Junqing, LI Qian, WANG Baoshi. Numerical Model of Asphalt Pavement Considering Transversely Isotropic Fatigue Damage[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 670-676. doi: 10.3969/j.issn.0258-2724.2016.04.010
    [13]CHEN Guangwei, LIU Liping, SU Kai, TANG Wen, CHEN Rongsheng. Rutting Model Considering Shear Behavior of Asphalt Pavement[J]. Journal of Southwest Jiaotong University, 2013, 26(4): 672-677. doi: 10.3969/j.issn.0258-2724.2013.04.013
    [14]LI Xin-Qing, LAN Shi-Yong, LI Gang. Simulation of Aircraft Flight Track by BéZier and B-spline Curve[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 1040-1045. doi: 10.3969/j.issn.0258-2724.2011.06.025
    [15]QIU Yanjun, AI Changfa, HUANG Bing, LAN Bo. Field Investigation and Structural Integrity of Asphalt Pavement in Cold Regions[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 147-154.
    [16]LIU Qi-lie, ZHANG Cui-fang, YI Fan. Controlling Chaotic Motions of Nonlinear System Using B-Spline Neural Network[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 18-21.
    [17]MAO Cheng, QIUYan-jun, LI Yun-peng. Simulation of Surface Crack Propagation in Asphalt Pavements and Analysis of Its influential Factors[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 437-441.
  • Cited by

    Periodical cited type(7)

    1. 周伟红. 手工铺砂法密实性对构造深度测定的影响研究. 工程质量. 2025(03): 102-105+110 .
    2. 荣文涛,门阳阳. 基于数字图像法对路面构造深度的方法研究. 山东交通科技. 2023(03): 56-59 .
    3. 周志刚,王岩,李刚,高琼. 酸雨对透水沥青路面抗滑耐久性的影响. 交通科学与工程. 2023(05): 53-63 .
    4. 冷红松,刘梅,贾济坤,杨刚,郜国凯. 矿区重载路面摩擦测试及抗滑性能研究. 能源与环保. 2022(05): 270-274+280 .
    5. 张彦,陈华,马少陈,谢承昊. 基于图像统计的路面磨损状况感知. 物流工程与管理. 2022(10): 80-84 .
    6. 徐鹏,祝轩,姚丁,史长云,钱国平,于华南. 沥青路面养护智能检测与决策综述. 中南大学学报(自然科学版). 2021(07): 2099-2117 .
    7. 张承亮. 基于重载交通影响的沥青路面抗滑性能衰减规律分析. 水利科学与寒区工程. 2021(05): 55-59 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 33.1 %FULLTEXT: 33.1 %META: 63.1 %META: 63.1 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.9 %其他: 7.9 %China: 0.4 %China: 0.4 %[]: 0.2 %[]: 0.2 %上海: 0.6 %上海: 0.6 %临汾: 1.1 %临汾: 1.1 %保定: 0.2 %保定: 0.2 %北京: 11.0 %北京: 11.0 %十堰: 0.2 %十堰: 0.2 %南京: 0.4 %南京: 0.4 %南宁: 1.5 %南宁: 1.5 %南昌: 0.2 %南昌: 0.2 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %大庆: 0.2 %大庆: 0.2 %天津: 1.3 %天津: 1.3 %宣城: 0.2 %宣城: 0.2 %常德: 0.2 %常德: 0.2 %张家口: 1.5 %张家口: 1.5 %成都: 2.4 %成都: 2.4 %扬州: 1.1 %扬州: 1.1 %揭阳: 0.2 %揭阳: 0.2 %昆明: 0.2 %昆明: 0.2 %景德镇: 0.2 %景德镇: 0.2 %杭州: 0.4 %杭州: 0.4 %桂林: 0.2 %桂林: 0.2 %武汉: 0.2 %武汉: 0.2 %池州: 0.4 %池州: 0.4 %沈阳: 0.2 %沈阳: 0.2 %泰州: 0.4 %泰州: 0.4 %淄博: 0.2 %淄博: 0.2 %温州: 0.2 %温州: 0.2 %漯河: 1.8 %漯河: 1.8 %烟台: 0.2 %烟台: 0.2 %石家庄: 2.6 %石家庄: 2.6 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 12.9 %芒廷维尤: 12.9 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.6 %苏州: 0.6 %衡阳: 0.2 %衡阳: 0.2 %西宁: 41.4 %西宁: 41.4 %西安: 0.4 %西安: 0.4 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 0.2 %贵阳: 0.2 %费利蒙: 0.2 %费利蒙: 0.2 %运城: 1.7 %运城: 1.7 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.6 %郑州: 0.6 %重庆: 0.4 %重庆: 0.4 %长沙: 1.3 %长沙: 1.3 %青岛: 0.2 %青岛: 0.2 %香港特别行政区: 0.4 %香港特别行政区: 0.4 %其他China[]上海临汾保定北京十堰南京南宁南昌哥伦布嘉兴大庆天津宣城常德张家口成都扬州揭阳昆明景德镇杭州桂林武汉池州沈阳泰州淄博温州漯河烟台石家庄秦皇岛芒廷维尤芝加哥苏州衡阳西宁西安诺沃克贵阳费利蒙运城邯郸郑州重庆长沙青岛香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views(343) PDF downloads(21) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return