• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
YANG Shiyu, ZHAO Renda, JIN Hesong, LI Fuhai, QIAO Yu. Mechanical Performance and Microstructure of Single Component Geopolymer Mortar[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 101-107, 137. doi: 10.3969/j.issn.0258-2724.20190588
Citation: YANG Shiyu, ZHAO Renda, JIN Hesong, LI Fuhai, QIAO Yu. Mechanical Performance and Microstructure of Single Component Geopolymer Mortar[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 101-107, 137. doi: 10.3969/j.issn.0258-2724.20190588

Mechanical Performance and Microstructure of Single Component Geopolymer Mortar

doi: 10.3969/j.issn.0258-2724.20190588
  • Received Date: 26 Jun 2019
  • Rev Recd Date: 27 Nov 2019
  • Available Online: 06 Dec 2019
  • Publish Date: 01 Feb 2021
  • In order to investigate the strength development rule and microscopic mechanism of fly ash based geopolymer mortar with different NaOH concentrations, cement-sand ratios and solution-cement ratios at various curing temperatures, the mechanical properties test were carried out. The microscopic morphology and pore size distribution were analyzed by scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP), respectively. The results show as follows: For geopolymer mortar specimens prepared using NaOH solution with a concentration of 10%, no significant strength development was observed even at very high curing temperatures. With the increase of NaOH concentration or curing temperature, the compressive strength and flexural strength of single component geopolymer mortar can obtain their best value, and the location of the value is determined by both curing temperature and NaOH concentration. The pore size distribution differential curve of the geopolymer is a unimodal distribution. Controlling the concentration of can greatly reduce the peak value of the pore diameter differential curve and significantly reduce the porosity of the geopolymer. Fly ash particles dissolve gradually under the action of NaOH and form cementitious material on its surface. When the concentration of Na+ is low, the geopolymer polymerization is less; controlling the concentration of NaOH can make the geopolymer become dense and improve their compressive strength. The fractal model based on thermodynamic relation is the best one to describe the structure of the geopolymer pore, followed by the pore axis model, while the spatial filling model and the sponge model can only describe the fractal dimension of the pore structure of gel pores and transition pores. The calculated values of fractal dimension based on thermodynamic relationship and sponge model are between 2.0 and 3.0, which is similar to the results of general cement-based materials. Proper adjustment of the concentration of NaOH can improve the pore structure of the geopolymer.

     

  • XIE J, WANG J, ZHANG B, et al. Physicochemical properties of alkali activated GGBS and fly ash geopolymeric recycled concrete[J]. Construction and Building Materials, 2019, 204: 384-398. doi: 10.1016/j.conbuildmat.2019.01.191
    CRETESCU I, HARJA M, TEODOSIU C, et al. Synthesis and characterisation of a binder cement replacement based on alkali activation of fly ash waste[J]. Process Safety and Environmental Protection, 2018, 119: 23-35. doi: 10.1016/j.psep.2018.07.011
    WIANGLOR K, SINTHUPINYO S, PIYAWORAPAIBOON M, et al. Effect of alkali-activated metakaolin cement on compressive strength of mortars[J]. Applied Clay Science, 2017, 141: 272-279. doi: 10.1016/j.clay.2017.01.025
    PART W K, RAMLI M, CHEAH C B. An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products[J]. Construction and Building Materials, 2015, 77: 370-395. doi: 10.1016/j.conbuildmat.2014.12.065
    BAKHAREV T. Geopolymeric materials prepared using class F fly ash and elevated temperature curing[J]. Cement and Concrete Research, 2005, 35(6): 1224-1232. doi: 10.1016/j.cemconres.2004.06.031
    RATTANASAK U, CHINDAPRASIRT P. Influence of NaOH solution on the synthesis of fly ash geopolymer[J]. Minerals Engineering, 2009, 22(12): 1073-1078. doi: 10.1016/j.mineng.2009.03.022
    PANIAS D, GIANNOPOULOU I P, PERRAKI T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 301(1): 246-254.
    龙涛, 石宵爽, 王清远, 等. 粉煤灰基地聚物再生混凝土的力学性能和微观结构[J]. 四川大学学报(工程科学版), 2013, 45(增刊1): 43-47.

    LONG Tao, SHI Xiaoshuang, WANG Qingyuan, et al. Mechanical properties and microstructure of fly ash based geopolymeric polymer recycled concrete[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(S1): 43-47.
    PAN Z, TAO Z, CAO Y F, et al. Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature[J]. Cement and Concrete Composites, 2018, 86: 9-18. doi: 10.1016/j.cemconcomp.2017.09.011
    HAMIDI R M, MAN Z, AZIZLI K A. Concentration of NaOH and the Effect on the properties of fly ash based Geopolymer[J]. Procedia Engineering, 2016, 148: 189-193. doi: 10.1016/j.proeng.2016.06.568
    ATIŞ C D, GÖRÜR E B, Karahan O, et al. Very high strength (120 MPa)class F fly ash geopolymer mortar activated at different NaOH amount,heat curing temperature and heat curing duration[J]. Construction and Building Materials, 2015, 96: 673-678. doi: 10.1016/j.conbuildmat.2015.08.089
    SOMNA K, JATURAPITAKKUL C, KAJITVICHYANUKUL P, et al. NaOH-activated ground fly ash geopolymer cured at ambient temperature[J]. Fuel, 2011, 90(6): 2118-2124. doi: 10.1016/j.fuel.2011.01.018
    李星烨. 碱激发粉煤灰砂浆性能研究[D]. 成都: 西南交通大学, 2018
    CHINDAPRASIRT P, JATURAPITAKKUL C, CHALEE W, et al. Comparative study on the characteristics of fly ash and bottom ash geopolymers[J]. Waste Management, 2009, 29(2): 539-543. doi: 10.1016/j.wasman.2008.06.023
    LEE W K W, DEVENTER J S. The effects of inorganic salt contamination on the strength and durability of geopolymers[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2002, 211(2): 115-126.
    YANG W C, GE Y, YUAN J, et al. Pore fractal characteristic of cement pastes with inorganic salts[C]//International Conference of Concrete Pavement. Haikou: [s.n.], 2009: 101-115.
    JI X, CHAN S Y, FENG N. Fractal model for simulating the space-filling process of cement hydrates and fractal dimensions of pore structure of cement-based materials[J]. Cement and Concrete Research, 1997, 27(11): 1691-1699. doi: 10.1016/S0008-8846(97)00157-9
    金珊珊,张金喜,李爽. 混凝土孔结构分形特征的研究现状与进展[J]. 混凝土,2009(10): 34-37,42.

    JIN Shanshan, ZHANG Jinxi, LI Shuang. Current situation and development of fractal characteristic of pore structure of concrete[J]. Concrete, 2009(10): 34-37,42.
    ZHANG B, LIU W, LIU X. Scale-dependent nature of the surface fractal dimension for bi-and multi-disperse porous solids by mercury porosimetry[J]. Applied Surface Science, 2006, 253(3): 1349-1355. doi: 10.1016/j.apsusc.2006.02.009
  • Relative Articles

    [1]XU Lueqin, XU Yihong, CHEN Liang, JIANG Linsong, ZHOU Jianting. Shear Bearing Capacity of Ultra-High Performance Concrete Keyed Joints Based on Shear-Compression Strength Criterion[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 253-261. doi: 10.3969/j.issn.0258-2724.20230042
    [2]JIA Chaojun, CHEN Fanlei, LEI Mingfeng, HUANG Juan, SHI Chenghua, LIU Di. Determination Method of Rock Strength Based on Digital Drilling Parameters[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230328
    [3]XIA Dongtao, WU Chen, CUI Kai, WU Fanghong, LI Biao, WANG Yu, YU Shiting, LI Yaowei. Effect of Fly Ash and Silica Fume Contents on Mechanical Properties of Alkali-Activated Slag-Based Concrete[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1113-1122. doi: 10.3969/j.issn.0258-2724.20230036
    [4]CHEN Chenghua, HUANG Zhichao, HUANG Junjie, YANG Chen. Mechanical Property and Frost Resistance Analysis of Foamed Lightweight Soil with Fiber Filament and Mesh Reinforcement[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 462-469. doi: 10.3969/j.issn.0258-2724.20210160
    [5]FANG Binxin, LIU Sihong, LU Yang, CHEN Shuang, ZHANG Chengbin. Experimental Study on Vertical Bearing Capacity and Cyclic Compression Behavior of Soilbags[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 210-218. doi: 10.3969/j.issn.0258-2724.20210028
    [6]XIN Ren, WANG Meiyao, WANG Qinglin, WANG Yan. Experimental Investigation of Masonry Shear Strength Under Compression[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1043-1049. doi: 10.3969/j.issn.0258-2724.20190444
    [7]YUAN Yuan, ZHAO Renda, ZHAN Yulin, LI Fuhai, CHENG Zhengqing, LI Jian. Carbonation Resistance of Fly Ash-Slag Based Geopolymer Concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1275-1282. doi: 10.3969/j.issn.0258-2724.20191151
    [8]ZHAO Renda, YANG Shiyu, JIA Wentao, ZENG Xianshuai, JIN Hesong, LI Fuhai. Review of Recent Progress in Durability of Fly Ash Based Geopolymer Concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1065-1074. doi: 10.3969/j.issn.0258-2724.20190993
    [9]GONG Wei, QIAO Hongxia, YU Hongfa, MA Haiyan, CHEN Guangfeng. Influence of Multiple Factors on Compressive Strength of Magnesium Oxychloride Cement Concrete[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 366-372. doi: 10.3969/j.issn.0258-2724.20180042
    [10]ZHANG Junxing, XU Jing, WANG Hongzhi. Non-Linear Analysis of Three-Segment Stiffness Compressive Bar Based on Direct Stiffness Method[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1173-1178, 1186. doi: 10.3969/j.issn.0258-2724.2018.06.012
    [11]ZHANG Junru, WEN Yumin, OU Xiaoqiang. Evolutionary Characteristics of Pore Structure of Fly Ash Shotcrete[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 296-302. doi: 10.3969/j.issn.0258-2724.2018.02.011
    [12]ZHAN Yulin, LI Guifeng, ZHAO Renda, ZOU Zhaoyong, XUE Dengyu. Failure Mechanism and Shear Capacity of Organic Polymer Shear Connectors[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 524-531. doi: 10.3969/j.issn.0258-2724.2017.03.012
    [13]LI Maohong, ZHANG Yujie, CHEN Hang, ZHAO Jumei. Effect of Dosage of Fly Ash and Blast Furnace Slag on Performance of Concrete Prepared with Poorly Graded Sand[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 342-346,353. doi: 10.3969/j.issn.0258-2724.2015.02.021
    [14]ZHOU Shangmeng, LI Yadong. Prediction of Biaxial Fatigue of Steel Bridge Gusset Plate Based on Stress Field Intensity Method[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 217-222. doi: 10.3969/j.issn.0258-2724.2011.02.007
    [15]PENG Xiaoqin, YANG Tao, WANG Kaiyu, MENG Xiangjie. Preparation of Geopolymeric Concrete and Its Application to Rapid Repair of Cement Concrete Pavement[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 205-210. doi: 10.3969/j.issn.0258-2724.2011.02.005
    [16]WANG Zhen, LI Guhua, ZHANG Zejiang, HUANG Tao. Effect of Fire Fighting Water on Compressive Strength of Concrete in Tunnel Fire[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 223-227. doi: 10.3969/j.issn.0258-2724.2011.02.008
    [17]LI Guhua, GAO Bo. Effect of Nano-SiO2 on Performance of Concrete in Dissolving/Crystalling Cycles of Salts[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 70-74.
    [18]XIAChun, LIUHao-wu, YANQi-xiang. Pozzolanic Activity and Morphology Features of Concrete Admixture of Lithium-Salt Residue[J]. Journal of Southwest Jiaotong University, 2002, 15(1): 29-34.
  • Cited by

    Periodical cited type(4)

    1. 吕炎,白二雷,王志航,孟欣,孙慧颖. 低温制备硅灰-偏高岭土-矿渣基地聚物砂浆试验及微观研究. 材料导报. 2023(S2): 218-226 .
    2. 吴伟,梁志凯,郑马嘉,姜振学,郭婕,薛子鑫,王孟. 页岩储层孔隙结构与分形特征演化规律. 油气地质与采收率. 2022(04): 35-45 .
    3. 杨世玉,赵人达,郭秋雨,曾宪帅. 纤维地聚物混凝土断裂性能试验. 工程科学与技术. 2022(06): 230-237 .
    4. 原元,赵人达,占玉林,李福海,成正清,李健. 粉煤灰-矿渣基地聚物混凝土的抗碳化性能. 西南交通大学学报. 2021(06): 1275-1282 . 本站查看

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0505101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 39.2 %FULLTEXT: 39.2 %META: 56.7 %META: 56.7 %PDF: 4.1 %PDF: 4.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.9 %其他: 7.9 %其他: 0.6 %其他: 0.6 %[]: 0.7 %[]: 0.7 %上海: 0.6 %上海: 0.6 %东莞: 0.6 %东莞: 0.6 %临汾: 0.4 %临汾: 0.4 %兰州: 0.4 %兰州: 0.4 %北京: 6.0 %北京: 6.0 %十堰: 0.4 %十堰: 0.4 %南京: 0.4 %南京: 0.4 %南昌: 0.4 %南昌: 0.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.6 %哥伦布: 0.6 %大连: 1.3 %大连: 1.3 %天津: 0.7 %天津: 0.7 %安康: 0.2 %安康: 0.2 %宣城: 0.2 %宣城: 0.2 %张家口: 2.6 %张家口: 2.6 %成都: 4.7 %成都: 4.7 %扬州: 0.4 %扬州: 0.4 %昆明: 0.6 %昆明: 0.6 %朔州: 0.2 %朔州: 0.2 %札幌: 0.2 %札幌: 0.2 %杭州: 1.3 %杭州: 1.3 %武汉: 0.2 %武汉: 0.2 %池州: 0.4 %池州: 0.4 %沈阳: 0.7 %沈阳: 0.7 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.4 %济南: 0.4 %淄博: 0.2 %淄博: 0.2 %深圳: 1.9 %深圳: 1.9 %漯河: 0.9 %漯河: 0.9 %石家庄: 2.2 %石家庄: 2.2 %福州: 0.4 %福州: 0.4 %芒廷维尤: 8.1 %芒廷维尤: 8.1 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.2 %苏州: 0.2 %蚌埠: 0.4 %蚌埠: 0.4 %衡阳: 0.2 %衡阳: 0.2 %西宁: 44.4 %西宁: 44.4 %西安: 1.7 %西安: 1.7 %诺丁汉: 0.2 %诺丁汉: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.1 %运城: 1.1 %郑州: 0.6 %郑州: 0.6 %重庆: 0.4 %重庆: 0.4 %金华: 0.2 %金华: 0.2 %长沙: 1.5 %长沙: 1.5 %青岛: 0.7 %青岛: 0.7 %马鞍山: 0.2 %马鞍山: 0.2 %其他其他[]上海东莞临汾兰州北京十堰南京南昌哈尔滨哥伦布大连天津安康宣城张家口成都扬州昆明朔州札幌杭州武汉池州沈阳洛阳济南淄博深圳漯河石家庄福州芒廷维尤芝加哥苏州蚌埠衡阳西宁西安诺丁汉贵阳运城郑州重庆金华长沙青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views(716) PDF downloads(25) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return