• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 5
Oct.  2023
Recommendations
Crew rostering schedule optimization for urban rail transit through resource sharing
LIU Gehui et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2025
Optimization model and algorithm of additional trains scheduling in high-speed railway timetables considering passenger demand
ZHAO Tianyin et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2025
Hyperpath searching algorithm method based on signal delay at intersections
DU Muqing et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2024
Optimization of wagon flow assignment with transship work for multiple marshaling stations at railroad terminals
LI Bing et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2023
Application of local search optimization genetic algorithm in multi-level operation mode of urban suburban railways
WANG Zhuo et al., INTELLIGENT CITY, 2025
Urban rail transit passenger flow drn-bilstm combined forecasting model under catastrophic weather conditions
CHENG Guozhu et al., JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY, 2025
An optimized method for urban traffic state discrimination
HUANG Jiahui et al., JOURNAL OF FUDAN UNIVERSITY(NATURAL SCIENCE), 2025
Exploring models for an international legal agreement on the global antimicrobial commons: lessons from climate agreements
Van Katwyk, Susan Rogers et al., HEALTH CARE ANALYSIS, 2023
Predicting urban region heat via learning arrive-stay-leave behaviors of private cars
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
Neural-network-based dynamic distribution model of parking space under sharing and non-sharing modes
SUSTAINABILITY
Powered by
JIAN Min, WANG Zhuo, CHEN Zhexuan, ZHAO Liujie, CHEN Qianfei, CHEN Shaokuan. Passenger Flow Assignment Method for Urban Rail Transit Networks Based on Inference of Spatiotemporal Path[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1117-1125. doi: 10.3969/j.issn.0258-2724.20220545
Citation: JIAN Min, WANG Zhuo, CHEN Zhexuan, ZHAO Liujie, CHEN Qianfei, CHEN Shaokuan. Passenger Flow Assignment Method for Urban Rail Transit Networks Based on Inference of Spatiotemporal Path[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1117-1125. doi: 10.3969/j.issn.0258-2724.20220545

Passenger Flow Assignment Method for Urban Rail Transit Networks Based on Inference of Spatiotemporal Path

doi: 10.3969/j.issn.0258-2724.20220545
  • Received Date: 09 Aug 2022
  • Rev Recd Date: 21 Oct 2022
  • Available Online: 11 Apr 2023
  • Publish Date: 03 Nov 2022
  • To calculate passenger flow distribution in urban rail transits, a passenger flow assignment method based on inference of passenger spatiotemporal path is proposed with the data collected from the automatic fare collection (AFC) and train timetables. Firstly, the passenger travel time parameters are estimated with the above two types of data. The feasible path set of each origin–destination (OD) in the whole network is then obtained by using the feasible path search algorithm based on the node-inserting method. Subsequently, according to the inbound and outbound information from passenger smart cards, train timetable and matched feasible path set, an inference model of passenger effective travel path and train set is built to obtain the effective travel result set. Finally, a train operation is developed with the obtained effective result set, train load capacity, and train timetable to determine the sole effective travel path and riding train. A calculation system for the passenger flow in urban rail transit networks is designed and developed, and a case study is conducted on weekday passenger flow data of urban rail transit. The results show that the average difference of section passenger flow between the calculated results and operation reference data of upstream and downstream is 2.03% and 3.90%, respectively, and the trend of train load rate confirms to the line routing. Moreover, the source of transfer passenger flow at transfer station is stable in the morning and evening peaks, but the proportion of sources in the morning peak is more stable that in the evening peak.

     

  • [1]
    曾鸣凯,黄鉴,彭其渊. 客运专线旅客列车开行方案的客流分配方法[J]. 西南交通大学学报,2006,41(5): 571-574. doi: 10.3969/j.issn.0258-2724.2006.05.006

    ZENG Mingkai, HUANG Jian, PENG Qiyuan. Research on assignment of passenger train plan for dedicated passenger train line[J]. Journal of Southwest Jiaotong University, 2006, 41(5): 571-574. doi: 10.3969/j.issn.0258-2724.2006.05.006
    [2]
    张思佳,贾顺平,毛保华,等. 乘客出行距离分布对轨道线网内公交竞争力的影响[J]. 浙江大学学报(工学版),2019,53(2): 292-298. doi: 10.3785/j.issn.1008-973X.2019.02.012

    ZHANG Sijia, JIA Shunping, MAO Baohua, et al. Influence of passenger trip distance distribution on competitiveness of bus lines in urban rail transit network[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(2): 292-298. doi: 10.3785/j.issn.1008-973X.2019.02.012
    [3]
    许得杰,巩亮,朱宁,等. 城市轨道交通多交路共线运营客流分配方法[J]. 交通运输系统工程与信息,2021,21(5): 206-213. doi: 10.16097/j.cnki.1009-6744.2021.05.021

    XU Dejie, GONG Liang, ZHU Ning, et al. Passenger flow assignment method for common-line operation with multi-routing of urban rail transit[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 206-213. doi: 10.16097/j.cnki.1009-6744.2021.05.021
    [4]
    ASAKURA Y, IRYO T, NAKAJIMA Y, et al. Estimation of behavioural change of railway passengers using smart card data[J]. Public Transport, 2012, 4(1): 1-16. doi: 10.1007/s12469-011-0050-0
    [5]
    KUSAKABE T, IRYO T, ASAKURA Y. Estimation method for railway passengers’ train choice behavior with smart card transaction data[J]. Transportation, 2010, 37: 731-749.
    [6]
    YAO X M, HAN B M, YU D D, et al. Simulation-based dynamic passenger flow assignment modelling for a schedule-based transit network[J]. Discrete Dynamics in Nature and Society, 2017, 2017: 1-15.
    [7]
    刘峰博,周庭梁,王小敏. 城市轨道交通故障下客流分布计算及评估方法[J]. 西南交通大学学报,2021,56(5): 921-927,966.

    LIU Fengbo, ZHOU Tingliang, WANG Xiaomin. Calculation and evaluation method of passenger flow distribution under urban rail transit failure[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 921-927,966.
    [8]
    ZHU Y W, KOUTSOPOULOS H N, WILSON N H M. A probabilistic passenger-to-train assignment model based on automated data[J]. Transportation Research Part B: Methodological, 2017, 104: 522-542.
    [9]
    陈钱飞. 城市轨道交通网络乘客时空路径估计与瓶颈识别方法研究[D]. 北京: 北京交通大学, 2021.
    [10]
    中华人民共和国建设部, 中华人民共和国国家发展和改革委员会. 城市轨道交通工程项目建设标准: 建标 104—2008[S]. 北京: 中国计划出版社, 2008.
  • Relative Articles

    [1]LIU Wei, DENG Haotian, XU Qian, RAO Xiaoming. Optimal Design of Power Supply Scheme for Sharing Resources in Urban Rail Interchange Stations[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 541-549. doi: 10.3969/j.issn.0258-2724.20230146
    [2]DING Tiecheng, ZHI Jinyi, ZOU Rui, WANG Zhenyu, HE Sijun, JING Chunhui. Impact of Initial Levels of Trust in Automation on Urban Rail Transit Driving Tasks[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230654
    [3]LIU Gehui, JIN Hua, PENG Qiyuan, LIU Ling, RAN Xinchen, LAN Zhen. Crew Rostering Schedule Optimization for Urban Rail Transit Through Resource Sharing[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 731-740. doi: 10.3969/j.issn.0258-2724.20230165
    [4]MENG Chuncheng, QU Daoyuan, DUAN Xiaochen. Nonlinear Prediction and Inversion of Civil Engineering Cost of Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 137-146. doi: 10.3969/j.issn.0258-2724.20230209
    [5]LIU Jie, CHEN Jinqu, PENG Qiyuan, YIN Yong. Reliability and Service Quality Evaluation for Urban Rail Transit Network[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 395-402, 450. doi: 10.3969/j.issn.0258-2724.20190938
    [6]NONG Xingzhong, SHI Haiou, YUAN Quan, ZENG Wenqu, ZHENG Qing, DING Guofu. Review on BIM Technology Used in Urban Rail Transit Projects[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 451-460. doi: 10.3969/j.issn.0258-2724.20200018
    [7]LIU Fengbo, ZHOU Tingliang, WANG Xiaomin. Calculation and Evaluation Method of Passenger Flow Distribution under Urban Rail Transit Failure[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 921-927, 966. doi: 10.3969/j.issn.0258-2724.20200602
    [8]YIN Yong, CHEN Jinqu, ZHU Man, LIU Jie. Repair Strategies for Failure of Urban Rail Transit Stations[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 865-872. doi: 10.3969/j.issn.0258-2724.20191133
    [9]ZHANG Hong, YAO Yangang, YANG Xiaoqin. Light-Duty Vehicles Driving Cycle Construction Based on Urban Roads[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1139-1146, 1154. doi: 10.3969/j.issn.0258-2724.20180224
    [10]ZHOU Ning, ZOU Huan, ZOU Dong, TAN Mengying, ZHANG Weihua. Investigation on the Applicability of Pantograph and Catenary Model Urban Railway System[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 408-415,423. doi: 10.3969/j.issn.0258-2724.2017.02.026
    [11]LU Gongyuan, MA Si, WANG Kun, DENG Nian. Integer Programming Model of Passenger Flow Assignment for Congested Urban Rail lines[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 319-325. doi: 10.3969/j.issn.0258-2724.2017.02.015
    [12]LI Qunzhan. Industrial Frequency Single-Phase AC Traction Power Supply System and Its Key Technologies for Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 199-207. doi: 10.3969/j.issn.0258-2724.2015.02.001
    [13]SHANG Bin, ZHANG Xiaoning. Passenger-Flow Spatial Distribution Model of Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 539-545. doi: 10.3969/j.issn.0258-2724.2013.03.023
    [14]CHENG Jie, PENG Qiyuan, ZHAO Jun. Train Routing Optimization Model for Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2013, 26(6): 1116-1121. doi: 10.3969/j.issn.0258-2724.2013.06.023
    [15]CAI Guoqiang, ZHOU Liming, LI Xi, JIA Limin. Reliability Analysis of Urban Rail Transit Vehicle's Door System Based on GO Method[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 264-270. doi: 10.3969/j.issn.0258-2724.2011.02.015
    [16]LIU Jingyu, FANG Yanjun. Urban Vehicle Routing Based on Ant Colony Algorithm[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 912-917.
    [17]ZENG Mingkai, HUANG Jian, PENG Qiyuan. Research on Assignment of Passenger Train Plan for Dedicated Passenger Traffic Lines[J]. Journal of Southwest Jiaotong University, 2006, 19(5): 571-574.
    [18]ZHANG Yang, HUANG Qing, LI Jun. Flexible Choice Strategy of Fuzzy Vehicle Routing in Urban Traffic under Uncertainty[J]. Journal of Southwest Jiaotong University, 2006, 19(4): 481-485.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-122025-012025-022025-032025-042025-052025-062025-072025-082025-092025-102025-1101020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.9 %FULLTEXT: 20.9 %META: 73.7 %META: 73.7 %PDF: 5.4 %PDF: 5.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.2 %其他: 13.2 %其他: 0.6 %其他: 0.6 %Wan Chai: 0.2 %Wan Chai: 0.2 %上海: 1.3 %上海: 1.3 %东莞: 0.5 %东莞: 0.5 %临汾: 0.1 %临汾: 0.1 %九江: 0.1 %九江: 0.1 %兰州: 0.2 %兰州: 0.2 %凉山: 0.1 %凉山: 0.1 %北京: 8.8 %北京: 8.8 %十堰: 0.6 %十堰: 0.6 %南京: 0.4 %南京: 0.4 %南昌: 0.2 %南昌: 0.2 %南通: 0.1 %南通: 0.1 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.6 %嘉兴: 0.6 %大庆: 0.2 %大庆: 0.2 %大理: 0.2 %大理: 0.2 %大连: 0.2 %大连: 0.2 %天津: 2.3 %天津: 2.3 %太原: 0.3 %太原: 0.3 %宣城: 1.4 %宣城: 1.4 %山景城: 0.6 %山景城: 0.6 %常州: 0.6 %常州: 0.6 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.4 %广州: 0.4 %张家口: 2.8 %张家口: 2.8 %徐州: 0.1 %徐州: 0.1 %德阳: 0.1 %德阳: 0.1 %成都: 0.9 %成都: 0.9 %扬州: 1.6 %扬州: 1.6 %新乡: 0.1 %新乡: 0.1 %昆明: 0.9 %昆明: 0.9 %曼谷: 0.1 %曼谷: 0.1 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.8 %杭州: 0.8 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.2 %桂林: 0.2 %池州: 1.3 %池州: 1.3 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.2 %泰安: 0.2 %洛阳: 0.3 %洛阳: 0.3 %淄博: 0.4 %淄博: 0.4 %淮安: 0.1 %淮安: 0.1 %深圳: 1.5 %深圳: 1.5 %温州: 0.9 %温州: 0.9 %湖州: 0.1 %湖州: 0.1 %漯河: 4.1 %漯河: 4.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 4.3 %石家庄: 4.3 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 10.9 %芒廷维尤: 10.9 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.4 %苏州: 0.4 %衡阳: 0.3 %衡阳: 0.3 %西宁: 23.8 %西宁: 23.8 %西安: 0.4 %西安: 0.4 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 0.6 %运城: 0.6 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.8 %郑州: 0.8 %重庆: 0.6 %重庆: 0.6 %锦州: 0.1 %锦州: 0.1 %镇江: 0.1 %镇江: 0.1 %长沙: 2.8 %长沙: 2.8 %雷德蒙德: 1.0 %雷德蒙德: 1.0 %青岛: 0.9 %青岛: 0.9 %马鞍山: 0.3 %马鞍山: 0.3 %其他其他Wan Chai上海东莞临汾九江兰州凉山北京十堰南京南昌南通合肥呼和浩特咸阳哈尔滨哥伦布嘉兴大庆大理大连天津太原宣城山景城常州常德平顶山广州张家口徐州德阳成都扬州新乡昆明曼谷朝阳杭州格兰特县桂林池州沈阳泰安洛阳淄博淮安深圳温州湖州漯河烟台石家庄福州秦皇岛芒廷维尤芝加哥苏州衡阳西宁西安诺沃克贵阳运城邯郸郑州重庆锦州镇江长沙雷德蒙德青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article views(797) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return