• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
TANG Qifu, LI Mi, ZHAO Jing, GUO Yangting, PENG Song. Short-Period Error Suppression Method of PCB-Based Inductive Linear Displacement Sensor[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1314-1321. doi: 10.3969/j.issn.0258-2724.20220450
Citation: TANG Qifu, LI Mi, ZHAO Jing, GUO Yangting, PENG Song. Short-Period Error Suppression Method of PCB-Based Inductive Linear Displacement Sensor[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1314-1321. doi: 10.3969/j.issn.0258-2724.20220450

Short-Period Error Suppression Method of PCB-Based Inductive Linear Displacement Sensor

doi: 10.3969/j.issn.0258-2724.20220450
  • Received Date: 05 Jul 2022
  • Rev Recd Date: 12 Feb 2023
  • Available Online: 05 Dec 2023
  • Publish Date: 24 Feb 2023
  • In the linear displacement measurement, the printed circuit board (PCB)-based new inductive displacement sensors is easy to lead to short-period errors in manufacturing, assembly, and other process links because of its large pitch. Among the types of short-period errors caused, the first-order and fourth-order errors are the most common short-period errors in PCB-based inductive linear displacement sensors. Therefore, in order to reduce the first-order and fourth-order errors, the generation mechanism of these two kinds of errors was first studied from the output signals, and then an error self-correction method that did not depend on external reference was proposed. Firstly, the sources of short-period first-order and fourth-order errors and the functions of the two errors with the original sine (SIN) and cosine (COS) signals of the sensor were analyzed theoretically. Then, a short-period error function model based on the characteristics of the original SIN and COS signals of the sensor was established, and the corresponding parameters of the first-order and fourth-order errors in the error function model were calculated based on the measured data of the sensor prototype. Finally, the first-order and fourth-order error models were used for the error compensation of the sensor prototype. The results of prototype experiments show that the peak-to-peak value of the error after compensation is reduced from 51.6 μm to 36.2 μm. The short-period first-order error is reduced by about 64.5%, and the short-period fourth-order error is reduced by about 83.0%.

     

  • [1]
    高宏力,孙弋,郭亮,等. 机械加工质量预测研究现状与发展趋势[J]. 西南交通大学学报,2024,59(1): 120-141.

    GAO hongli, SUN yi, GUO liang, et al. Research status and development trend of machining quality prediction[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 120-141.
    [2]
    彭珍瑞,张楠,殷红,等. 基于频响函数的动车组构架传感器优化布置[J]. 西南交通大学学报,2019,54(2): 402-407,414.

    PENG Zhenrui, ZHANG Nan, YIN Hong, et al. Optimal sensor placement of EMU frame based on frequency response function[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 402-407,414.
    [3]
    魏正杰,张迪,吴冠豪. 用于精密位移测量的微型光栅传感器开发[J]. 光子学报,2021,50(9): 9-19.

    WEI Zhengjie, ZHANG Di, WU Guanhao. Development of miniature optical encoder for precise displacement measurement[J]. Acta Photonica Sinica, 2021, 50(9): 9-19.
    [4]
    张周强,周玲,郭忠超,等. 基于电驱动纳米光栅的结构设计及仿真分析[J]. 光学学报,2021,41(21): 58-64.

    ZHANG Zhouqiang, ZHOU Ling, GUO Zhongchao, et al. Structure design and simulation analysis based on electrically driven nanograting[J]. Acta Optica Sinica, 2021, 41(21): 58-64.
    [5]
    王亮亮,商正君,郑立新,等. 基于激光干涉仪对天文底片扫描仪气浮式运动平台的性能测试[J]. 计算机测量与控制,2021,29(12): 79-83. doi: 10.16526/j.cnki.11-4762/tp.2021.12.015

    WANG Liangliang, SHANG Zhengjun, ZHENG Lixin, et al. Performance test of air-bearing motion platform applied by astronomical plates digitizer based on laser interferometer[J]. Computer Measurement & Control, 2021, 29(12): 79-83. doi: 10.16526/j.cnki.11-4762/tp.2021.12.015
    [6]
    朱记全,许候杰. 基于激光干涉仪测量内径千分尺示值误差方法的探讨[J]. 精密制造与自动化,2021(4): 58-60. doi: 10.3969/j.issn.1009-962X.2021.4.jmzzyzdh202104014

    ZHU Jiquan, XU Houjie. Discussion on the method of measuring the indication error of inside micrometer based on laser interferometer[J]. Precise Manufacturing & Automation, 2021(4): 58-60. doi: 10.3969/j.issn.1009-962X.2021.4.jmzzyzdh202104014
    [7]
    ANIL KUMAR A S, ANANDAN N, GEORGE B, et al. Improved capacitive sensor for combined angular and linear displacement sensing[J]. IEEE Sensors Journal, 2019, 19(22): 10253-10261. doi: 10.1109/JSEN.2019.2929538
    [8]
    ZENG T, LU Y F, LIU Y M, et al. A capacitive sensor for the measurement of departure from the vertical movement[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 458-466. doi: 10.1109/TIM.2015.2490806
    [9]
    LIU X K, HUANG R, YU Z C, et al. A high-accuracy capacitive absolute time-grating linear displacement sensor based on a multi-stage composite method[J]. IEEE Sensors Journal, 2021, 21(7): 8969-8978. doi: 10.1109/JSEN.2021.3054165
    [10]
    孟瑶,周启武,郑方燕,等. 纳米时栅的电气参数与误差特性研究[J]. 重庆理工大学学报(自然科学),2019,33(6): 65-71.

    MENG Yao, ZHOU Qiwu, ZHENG Fangyan, et al. Study on electrical parameters and error characteristics of nanometer time-grating[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(6): 65-71.
    [11]
    杨帆. 绝对式光栅尺可靠性研究与误差分析[D]. 北京: 中国科学院大学, 2021.
    [12]
    王璐钰,李玉琼,蔡榕. 空间激光干涉仪激光抖动噪声抑制研究[J]. 中国光学,2021,14(6): 1426-1434.

    WANG Luyu, LI Yuqiong, CAI Rong. Noise suppression of laser jitter in space laser interferometer[J]. Chinese Optics, 2021, 14(6): 1426-1434.
    [13]
    NIHTIANOV S. Reactive sub-nanometer displacement sensors: advantages and limitations[C]//2013 Africon. Pointe aux Piments, Mauritius. [S.l.]: IEEE, 2014: 1-6.
    [14]
    荣锋,韩信,郭翠娟. 基于电涡流传感器的微位移测量系统的设计[J]. 仪表技术与传感器,2020(9): 12-18.

    RONG Feng, HAN Xin, GUO Cuijuan. Design of micro-displacement measurement system based on eddy current sensor[J]. Instrument Technique and Sensor, 2020(9): 12-18.
    [15]
    田敏,范青. 浅析电涡流位移传感器低温环境下输出的特性[J]. 仪器仪表标准化与计量,2021(4): 46-48. doi: 10.3969/j.issn.1672-5611.2021.04.022

    TIAN Min, FAN Qing. Analysis of the output characteristics of eddy current displacement sensor in low temperature environment[J]. Instrument Standardization & Metrology, 2021(4): 46-48. doi: 10.3969/j.issn.1672-5611.2021.04.022
    [16]
    朱巧荣,张卫平. “直线式感应同步器—鉴相型系统”原理仿真实验CAI[J]. 机床与液压,2001,29(3): 102.

    ZHU Qiaorong, ZHANG Weiping. CAI of principle simulation experiment of “linear inductosyn-phase discrimination system”[J]. Machine Tool & Hydraulics, 2001, 29(3): 102.
    [17]
    曾乐乐. 直线式感应同步器[J]. 科技风,2018(34): 144. doi: 10.19392/j.cnki.1671-7341.201834127

    ZENG Leyue. Linear inductosyn[J]. Technology Wind, 2018(34): 144. doi: 10.19392/j.cnki.1671-7341.201834127
    [18]
    柏受军,杨元园,王鸣,等. 基于ADμC845的LVDT位移传感器非线性补偿[J]. 传感技术学报,2013,26(4): 541-544. doi: 10.3969/j.issn.1004-1699.2013.04.020

    BAI Shoujun, YANG Yuanyuan, WANG Ming, et al. Nonlinear compensation of LVDT displacement sensor based on ADμC845[J]. Chinese Journal of Sensors and Actuators, 2013, 26(4): 541-544. doi: 10.3969/j.issn.1004-1699.2013.04.020
    [19]
    郁明辉,李鹏,刘肖肖. 双余度LVDT位移传感器输出电压线性度研究[J]. 电子测量技术,2020,43(2): 26-32. doi: 10.19651/j.cnki.emt.1903331

    YU Minghui, LI Peng, LIU Xiaoxiao. Research on linearity of output voltage of double redundancy LVDT displacement sensor[J]. Electronic Measurement Technology, 2020, 43(2): 26-32. doi: 10.19651/j.cnki.emt.1903331
    [20]
    ASCHENBRENNER B, ZAGAR B G. Analysis and validation of a planar high-frequency contactless absolute inductive position sensor[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(3): 768-775. doi: 10.1109/TIM.2014.2348631
    [21]
    TANG Q F, WU L, CHEN X H, et al. An inductive linear displacement sensor based on planar coils[J]. IEEE Sensors Journal, 2018, 18(13): 5256-5264. doi: 10.1109/JSEN.2018.2839730
    [22]
    高文政,石洪,汤其富. 平面磁场式绝对角度传感器的误差产生机理与抑制方法研究[J]. 重庆理工大学学报(自然科学),2021,35(6): 113-121.

    GAO Wenzheng, SHI Hong, TANG Qifu. Study on the error production mechanism and suppression methods of the planar inductive absolute angle sensor[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(6): 113-121.
    [23]
    刘洋,武亮,彭东林,等. 平面线圈型时栅传感器及动尺姿态误差特性分析[J]. 仪表技术与传感器,2020(11): 21-27,32. doi: 10.3969/j.issn.1002-1841.2020.11.005

    LIU Yang, WU Liang, PENG Donglin, et al. Analysis of attitude error characteristics of planar coil time grating sensor and moving ruler[J]. Instrument Technique and Sensor, 2020(11): 21-27,32. doi: 10.3969/j.issn.1002-1841.2020.11.005
    [24]
    BABU A, GEORGE B. Design and development of a new non-contact inductive displacement sensor[J]. IEEE Sensors Journal, 2018, 18(3): 976-984. doi: 10.1109/JSEN.2017.2780835
    [25]
    翁道纛,汤其富,彭东林,等. 一种互补耦合型电磁感应式直线位移传感器的研究[J]. 传感技术学报,2019,32(7): 996-1002. doi: 10.3969/j.issn.1004-1699.2019.07.007

    WENG Daodao, TANG Qifu, PENG Donglin, et al. Research on a linear inductive displacement sensor with complementary coupling structure[J]. Chinese Journal of Sensors and Actuators, 2019, 32(7): 996-1002. doi: 10.3969/j.issn.1004-1699.2019.07.007
    [26]
    SANDRA K R, ANIL KUMAR A S, GEORGE B, et al. A linear differential inductive displacement sensor with dual planar coils[J]. IEEE Sensors Journal, 2019, 19(2): 457-464. doi: 10.1109/JSEN.2018.2877209
    [27]
    GU X Y, TANG Q F, PENG D L, et al. An inductive linear displacement sensor with bilateral sensing units[J]. IEEE Sensors Journal, 2021, 21(1): 296-305. doi: 10.1109/JSEN.2020.3014674
    [28]
    ZHAO J, LI M, PENG S, et al. An inductive linear displacement sensor with complementary resonant coupling units[J]. IEEE Sensors Journal, 2021, 21(22): 25659-25667. doi: 10.1109/JSEN.2021.3118839
  • Relative Articles

    [1]FENG Fu, HU Hailin, ZHONG Deming, YANG Jie. Online Parameter Identification of Linear Induction Motors Based on Improved Interconnected Full-Order Observer[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 776-785. doi: 10.3969/j.issn.0258-2724.20230507
    [2]SONG Zhanfeng, GUO Jiejia, LI Jun. Fitting a Straight-Line to Data Points with Correlated Noise Between Coordinate Components under Constraints[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1283-1289. doi: 10.3969/j.issn.0258-2724.20200120
    [3]CAI Xiaopei, TAN Xi, GUO Liangwu, ZHONG Yanglong. Spatial Distribution Characteristics of Rail Vibration Acceleration under Train Load[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 459-466. doi: 10.3969/j.issn.0258-2724.2018.03.005
    [4]ZHU Feng, LIU Guanghui, YE Jiaquan, DU Hui. Test Analysis and Modeling of Power Frequency Magnetic-Field Environment in Carbodies of Electrified Trains[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 400-404. doi: 10.3969/j.issn.0258-2724.2015.03.002
    [5]MA Jiaqing, ZHOU Dajin, ZHAO Lifeng, ZHANG Yong, ZHAO Yong. Speed-Sensorless Vector Control of Primary Cascaded Linear Induction Motor[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 417-422. doi: 10.3969/j.issn.0258-2724.2015.03.005
    [6]CHE Chang, HU Dan. CoarseSignalProcessingforACPowerSmartSensor[J]. Journal of Southwest Jiaotong University, 2011, 24(4): 598-603. doi: 10.3969/j.issn.0258-2724.2011.04.012
    [7]TANG Yong, CHEN Zhijian. Sensor Selection Optimization for Monitoring System of Large-Scale Group-Pile Foundation[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 247-252. doi: 10.3969/j.issn.0258-2724.2011.02.012
    [8]HUANG Youpeng, WU Hanbao, ZHANG Zhiyun. Bearing Combination-Based Fusion Algorithm for Heterogeneous Sensors Track Data[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 277-281. doi: 10.3969/j.issn.0258-2724.2011.02.017
    [9]LI Chi-Wu, SU Jian, LIU Yu-Mei. Technology for Monitoring Automotive Engine Lubricating Oil by Dielectric Constant Method[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 831-835. doi: 10.3969/j.issn.0258-2724.2011.05.020
    [10]ZHOU Xiao-Jia, TUN Xia, YAN Bin. Dynamic Wireless Sensor Network Based on Mobile Base Station[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 793-797. doi: 10.3969/j.issn.0258-2724.2011.05.013
    [11]YU Wangke, MA Wenping, CHEN Hefeng. Key Management Scheme for Clustered Wireless Sensor Networks[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 310-314. doi: 10.3969/j.issn.0258-2724.2011.02.022
    [12]LILei, LIFengrong, HUANG Heqing. DistributedDetectionAlgorithmforLocal-BottleneckNodes ofWirelessSensorNetwork[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 475-480.
    [13]SONG Qiang, HE You, XIONG Wei. New Fusion Estimation Algorithm for Systematic Errors of Multiple Dissimilar Sensors[J]. Journal of Southwest Jiaotong University, 2011, 24(4): 681-687. doi: 10.3969/j.issn.0258-2724.2011.04.025
    [14]TANGJin-sheng, HUANGXue-mei, YANG Ru-gui. Design of Optical Heterodyne Fiber Sensor to Monitor Dam Deformation[J]. Journal of Southwest Jiaotong University, 2004, 17(2): 226-228.
    [15]AO Yin-hui, XUXiao-dong, WUNai-you. Defect Detecting of Train Wheelset Tread Surface with Laser Displacement Sensor[J]. Journal of Southwest Jiaotong University, 2004, 17(3): 345-348.
    [16]YANG Guang, QIUJing, WENXi-sen, LIU Guan-jun. Mathematical Model Analysis of False Alarm in Mechatronics Built-in Test Systems[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 581-583.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0701020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.8 %FULLTEXT: 23.8 %META: 64.0 %META: 64.0 %PDF: 12.2 %PDF: 12.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.4 %其他: 17.4 %其他: 0.2 %其他: 0.2 %上海: 0.2 %上海: 0.2 %东莞: 0.4 %东莞: 0.4 %中山: 0.4 %中山: 0.4 %北京: 3.1 %北京: 3.1 %十堰: 0.4 %十堰: 0.4 %南京: 5.2 %南京: 5.2 %南宁: 0.2 %南宁: 0.2 %南通: 0.2 %南通: 0.2 %台州: 0.4 %台州: 0.4 %合肥: 0.2 %合肥: 0.2 %吉林: 0.4 %吉林: 0.4 %呼和浩特: 0.2 %呼和浩特: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.6 %嘉兴: 0.6 %大庆: 0.4 %大庆: 0.4 %天津: 0.6 %天津: 0.6 %宣城: 0.4 %宣城: 0.4 %常州: 1.2 %常州: 1.2 %常德: 0.4 %常德: 0.4 %广州: 1.0 %广州: 1.0 %张家口: 5.0 %张家口: 5.0 %成都: 1.0 %成都: 1.0 %扬州: 0.6 %扬州: 0.6 %无锡: 0.2 %无锡: 0.2 %杭州: 1.2 %杭州: 1.2 %桂林: 0.4 %桂林: 0.4 %武汉: 1.0 %武汉: 1.0 %池州: 0.8 %池州: 0.8 %沈阳: 0.6 %沈阳: 0.6 %深圳: 1.7 %深圳: 1.7 %温州: 0.6 %温州: 0.6 %湖州: 0.2 %湖州: 0.2 %漯河: 2.9 %漯河: 2.9 %烟台: 0.2 %烟台: 0.2 %焦作: 0.4 %焦作: 0.4 %石家庄: 1.0 %石家庄: 1.0 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 11.6 %芒廷维尤: 11.6 %苏州: 1.4 %苏州: 1.4 %荆州: 0.2 %荆州: 0.2 %莱芜: 0.2 %莱芜: 0.2 %衢州: 0.2 %衢州: 0.2 %西宁: 24.4 %西宁: 24.4 %西安: 1.0 %西安: 1.0 %诺沃克: 2.7 %诺沃克: 2.7 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.7 %运城: 1.7 %邯郸: 0.2 %邯郸: 0.2 %鄂州: 0.2 %鄂州: 0.2 %重庆: 1.4 %重庆: 1.4 %长沙: 1.7 %长沙: 1.7 %随州: 0.2 %随州: 0.2 %青岛: 0.4 %青岛: 0.4 %其他其他上海东莞中山北京十堰南京南宁南通台州合肥吉林呼和浩特哥伦布嘉兴大庆天津宣城常州常德广州张家口成都扬州无锡杭州桂林武汉池州沈阳深圳温州湖州漯河烟台焦作石家庄秦皇岛芒廷维尤苏州荆州莱芜衢州西宁西安诺沃克贵阳运城邯郸鄂州重庆长沙随州青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views(308) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return