Citation: | YANG Rongshan, CHEN Jian, WANG Yuanhao, GAO Ziyuan, LI Ying, CAO Shihao. Experimental Design of Hydrodynamic Pressure in Ballastless Track Crack[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 414-420. doi: 10.3969/j.issn.0258-2724.20220342 |
The interlayer is the weak link of the ballastless track and the rainwater intrusion can aggravate the debonding damage. To study the distribution of hydrodynamic pressure in the interlayer crack of ballastless track under the high-speed train load, a planar calculational model is established, the effects of debonding depth and crack opening on the vertical displacement are analyzed, and a debonding depth close to that measured in the spot is determined. A ballastless track crack simulation device is designed to verify the effectiveness of the device under high frequency loading; based on this device, hydrodynamic pressure experiments on the interlayer debonding are carried out to investigate the effects of load frequency and crack opening on the hydrodynamic pressure. The results show that when the load frequency is 25 Hz and the amplitude is 1.1 kN, the maximum vertical relative displacement at the plate end of the simulation device is the same as the spot test results, indicating that the device can be used for interlayer hydrodynamic simulation; under the high frequency load, the water pressure in the interlayer debonding alternately changes positively and negatively, and the hydrodynamic pressure increases along the depth direction of the crack, with the maximum water pressure at the tip of the crack being 15.794 kPa. When the load frequency increases from 15 Hz to 25 Hz, the maximum hydrodynamic pressure increases from 1.646 kPa to 15.794 kPa, which is about 10 times greater. When the opening is increased from 8 mm to 14 mm, the maximum hydrodynamic pressure increases from 8.320 kPa to 15.794 kPa, which is about 2 times greater.
[1] |
赵国堂. 高速铁路无碴轨道结构[M]. 北京: 中国铁道出版社, 2006.
|
[2] |
王森荣,杨荣山,刘学毅,等. 无砟轨道裂缝产生原因与整治措施[J]. 铁道建筑,2007,47(9): 76-79. doi: 10.3969/j.issn.1003-1995.2007.09.029
WANG Senrong, YANG Rongshan, LIU Xueyi, et al. Causes and treatment measures of cracks in ballastless track[J]. Railway Engineering, 2007, 47(9): 76-79. doi: 10.3969/j.issn.1003-1995.2007.09.029
|
[3] |
刘钰,赵国堂. CRTSⅡ型板式无砟轨道结构层间早期离缝研究[J]. 中国铁道科学,2013,34(4): 1-7. doi: 10.3969/j.issn.1001-4632.2013.04.01
LIU Yu, ZHAO Guotang. Analysis of early gap between layers of CRTSⅡ slab ballastless track structure[J]. China Railway Science, 2013, 34(4): 1-7. doi: 10.3969/j.issn.1001-4632.2013.04.01
|
[4] |
邵丕彦,李海燕,吴韶亮,等. CRTSⅠ型轨道板温度变形及与砂浆垫层间离缝的测试研究[J]. 中国铁道科学,2013,34(2): 18-22. doi: 10.3969/j.issn.1001-4632.2013.02.04
SHAO Piyan, LI Haiyan, WU Shaoliang, et al. Measurement and research on temperature warping of CRTSⅠ track slab and crack between track slab and cement asphalt mortar cushion[J]. China Railway Science, 2013, 34(2): 18-22. doi: 10.3969/j.issn.1001-4632.2013.02.04
|
[5] |
曹世豪,杨荣山,刘学毅,等. 无砟轨道层间裂纹内动水压力特性分析[J]. 西南交通大学学报,2016,51(1): 36-42. doi: 10.3969/j.issn.0258-2724.2016.01.006
CAO Shihao, YANG Rongshan, LIU Xueyi, et al. Analysis of water pressure in ballastless track crack[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 36-42. doi: 10.3969/j.issn.0258-2724.2016.01.006
|
[6] |
杨荣山,曹世豪,谢露,等. 列车荷载与水耦合作用下的无砟轨道水力劈裂机理分析[J]. 铁道学报,2017,39(6): 95-103. doi: 10.3969/j.issn.1001-8360.2017.06.013
YANG Rongshan, CAO Shihao, XIE Lu, et al. Hydraulic fracturing mechanism of slab track under coupling effect of train load and water[J]. Journal of the China Railway Society, 2017, 39(6): 95-103. doi: 10.3969/j.issn.1001-8360.2017.06.013
|
[7] |
杨荣山,胡猛,孔晓钰,等. 双块式无砟轨道枕边裂缝水力伤损特性[J]. 铁道学报,2022,44(2): 81-89. doi: 10.3969/j.issn.1001-8360.2022.02.011
YANG Rongshan, HU Meng, KONG Xiaoyu, et al. Hydraulic damage characteristics of cracks adjacent to sleepers of twinblock ballastless track[J]. Journal of the China Railway Society, 2022, 44(2): 81-89. doi: 10.3969/j.issn.1001-8360.2022.02.011
|
[8] |
杨荣山,李莹,许钊荣,等. 多雨地区双块式无砟轨道湿态混凝土力学性能[J]. 西南交通大学学报,2022,57(4): 840-847. doi: 10.3969/j.issn.0258-2724.20210440
YANG Rongshan, LI Ying, XU ZhaoRong, et al. Mechanical properties of wet concrete inside double-block ballastless tracks in rainy areas[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 840-847. doi: 10.3969/j.issn.0258-2724.20210440
|
[9] |
徐桂弘,杨荣山,刘学毅. 荷载幅值对无砟轨道结构裂纹水压力影响[J]. 铁道工程学报,2015,32(1): 32-37. doi: 10.3969/j.issn.1006-2106.2015.01.007
XU Guihong, YANG Rongshan, LIU Xueyi. Impact of load amplitude on the water pressure of non-ballasted track structure[J]. Journal of Railway Engineering Society, 2015, 32(1): 32-37. doi: 10.3969/j.issn.1006-2106.2015.01.007
|
[10] |
曹世豪,杨荣山,刘学毅,等. 列车荷载作用下无砟轨道层间裂缝内水压力分布[J]. 中国铁道科学,2016,37(3): 9-15. doi: 10.3969/j.issn.1001-4632.2016.03.002
CAO Shihao, YANG Rongshan, LIU Xueyi, et al. Water pressure distribution in interlayer crack of ballastless track under train load[J]. China Railway Science, 2016, 37(3): 9-15. doi: 10.3969/j.issn.1001-4632.2016.03.002
|
[11] |
曹世豪. 列车荷载下无砟轨道层间裂缝内水力分布特性研究[D]. 成都: 西南交通大学, 2017.
|
[12] |
赵国堂,高亮,赵磊,等. CRTSⅡ型板式无砟轨道板下离缝动力影响分析及运营评估[J]. 铁道学报,2017,39(1): 1-10.
ZHAO Guotang, GAO Liang, ZHAO Lei, et al. Analysis of dynamic effect of gap under CRTSⅡ track slab and operation evaluation[J]. Journal of the China Railway Society, 2017, 39(1): 1-10.
|
[13] |
练兴平,杨晓刚,汪杰,等. 成灌线某晃车地段CRTS Ⅲ型板式无砟轨道层间离缝整治研究[J]. 铁道标准设计,2018,62(11): 34-38.
LIAN Xingping, YANG Xiaogang, WANG Jie, et al. Research on the connection damage remediation of CRTS Ⅲ ballastless track in train shaking area of Chengdu to Dujiangyan high-speed railway[J]. Railway Standard Design, 2018, 62(11): 34-38.
|