• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
SU Qinghua, HONG Nan, HU Zhongbo. Fixed Point Evolution Algorithm[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 175-184. doi: 10.3969/j.issn.0258-2724.20220079
Citation: SU Qinghua, HONG Nan, HU Zhongbo. Fixed Point Evolution Algorithm[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 175-184. doi: 10.3969/j.issn.0258-2724.20220079

Fixed Point Evolution Algorithm

doi: 10.3969/j.issn.0258-2724.20220079
  • Received Date: 26 Jan 2022
  • Rev Recd Date: 25 Jun 2022
  • Available Online: 23 Oct 2024
  • Publish Date: 30 Jun 2022
  • In order to design an efficient and robust evolution algorithm, the fixed point iteration idea in solving equations was first introduced into the optimization field. The optimization process of an evolution algorithm was regarded as the gradual display process of the fixed point of an equation in an iterative framework. On this basis, a novel evolution algorithm based on a mathematical model was developed, named fixed point evolution algorithm (FPEA). The reproduction operator of FPEA is a quadratic polynomial which is derived from a fixed point iteration model with the Aitken method. The overall framework of FPEA inherits the population-based iterative model of traditional evolution algorithms such as differential evolution algorithm. The experimental results show that the average ranking of the optimal value of FPEA ranks first among all the compared algorithms on benchmark functions CEC2014 and CEC2019. The proposed algorithm can achieve the highest solution accuracy with a low computational overhead on four engineering constraint design problems among the compared algorithms including CSA and GPE.

     

  • [1]
    BOUSSAÏD I, LEPAGNOT J, SIARRY P. A survey on optimization metaheuristics[J]. Information Sciences, 2013, 237: 82-117. doi: 10.1016/j.ins.2013.02.041
    [2]
    LARRANAGA P, LOZANO J. Estimation of distribution algorithms: a new tool for evolutionary computation[M]. Boston: Kluwer Press, 2001.
    [3]
    HANSEN N, OSTERMEIER A. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation[C]//Proceedings of IEEE International Conference on Evolutionary Computation. Nagoya: IEEE, 1996: 312-317.
    [4]
    MIRJALILI S. SCA: a Sine Cosine Algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. doi: 10.1016/j.knosys.2015.12.022
    [5]
    HU Z B, XU X L, SU Q H, et al. Grey prediction evolution algorithm for global optimization[J]. Applied Mathematical Modelling, 2020, 79: 145-160. doi: 10.1016/j.apm.2019.10.026
    [6]
    XU X L, HU Z B, SU Q H, et al. Multivariable grey prediction evolution algorithm: a new metaheuristic[J]. Applied Soft Computing, 2020, 89: 106086.1-106086.15. doi: 10.1016/j.asoc.2020.106086
    [7]
    GAO C, HU Z B, XIONG Z G, et al. Grey prediction evolution algorithm based on accelerated even grey model[J]. IEEE Access, 2020, 8: 107941-107957. doi: 10.1109/ACCESS.2020.3001194
    [8]
    HU Z B, GAO C, SU Q H. A novel evolutionary algorithm based on even difference grey model[J]. Expert Systems with Applications, 2021, 176: 114898.1-114898.12. doi: 10.1016/j.eswa.2021.114898
    [9]
    ZHOU T, HU Z B, ZHOU Q, et al. A novel grey prediction evolution algorithm for multimodal multiobjective optimization[J]. Engineering Applications of Artificial Intelligence, 2021, 100: 104173.1-104173.13. doi: 10.1016/j.engappai.2021.104173
    [10]
    HU Z B, LI Z, DAI C Y, et al. Multiobjective grey prediction evolution algorithm for environmental/economic dispatch problem[J]. IEEE Access, 2020, 8: 84162-84176. doi: 10.1109/ACCESS.2020.2992116
    [11]
    CAI G C, SU Q H, HU Z B. Automated test case generation for path coverage by using grey prediction evolution algorithm with improved scatter search strategy[J]. Engineering Applications of Artificial Intelligence, 2021, 106: 104454.1-104454.13. doi: 10.1016/j.engappai.2021.104454
    [12]
    AHMADIANFAR I, BOZORG-HADDAD O, CHU X F. Gradient-based optimizer: a new metaheuristic optimization algorithm[J]. Information Sciences, 2020, 540: 131-159. doi: 10.1016/j.ins.2020.06.037
    [13]
    GAO C, HU Z B, TONG W Y. Linear prediction evolution algorithm: a simplest evolutionary optimizer[J]. Memetic Computing, 2021, 13(3): 319-339. doi: 10.1007/s12293-021-00340-x
    [14]
    CHOW Y K, KAY S. On the aitken acceleration method for nonlinear problems[J]. Computers & Structures, 1984, 19(5/6): 757-761.
    [15]
    胡长军,魏硕,张纪林,等. 一种基于SMP的并行逐次超松弛迭代法[J]. 计算机研究与发展,2007,44(10): 1688-1693. doi: 10.1360/crad20071009

    HU Changjun, WEI Shuo, ZHANG Jilin, et al. A parallel SOR algorithm for linear systems on SMP[J]. Journal of Computer Research and Development, 2007, 44(10): 1688-1693. doi: 10.1360/crad20071009
    [16]
    LI Z, HU Z B, MIAO Y F, et al. Deep-mining backtracking search optimization algorithm guided by collective wisdom[J]. Mathematical Problems in Engineering, 2019, 2019: 2540102.1-2540102.30. doi: 10.1155/2019/2540102
    [17]
    STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. doi: 10.1023/A:1008202821328
    [18]
    KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks. Perth: IEEE, 1995: 1942-948.
    [19]
    CHOU J S, TRUONG D N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean[J]. Applied Mathematics and Computation, 2021, 389: 125535.1-125535.47. doi: 10.1016/j.amc.2020.125535
    [20]
    ABUALIGAH L, YOUSRI D, ABD ELAZIZ M, et al. Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers & Industrial Engineering, 2021, 157: 107250.1-107250.37.
    [21]
    AZIZI M. Atomic orbital search: a novel metaheuristic algorithm[J]. Applied Mathematical Modelling, 2021, 93: 657-683. doi: 10.1016/j.apm.2020.12.021
    [22]
    BOGAR E, BEYHAN S. Adolescent Identity Search Algorithm (AISA): a novel metaheuristic approach for solving optimization problems[J]. Applied Soft Computing, 2020, 95: 106503.1-106503.43. doi: 10.1016/j.asoc.2020.106503
    [23]
    ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm[J]. Computers & Structures, 2016, 169: 1-12.
    [24]
    WANG H L, HU Z B, SUN Y Q, et al. Modified backtracking search optimization algorithm inspired by simulated annealing for constrained engineering optimization problems[J]. Computational Intelligence and Neuroscience, 2018, 2018: 9167414.1-9167414.27.
    [25]
    SHABANI A, ASGARIAN B, SALIDO M, et al. Search and rescue optimization algorithm: a new optimization method for solving constrained engineering optimization problems[J]. Expert Systems with Applications, 2020, 161: 113698.1-113698.15. doi: 10.1016/j.eswa.2020.113698
    [26]
    KAVEH A, DADRAS A. A novel meta-heuristic optimization algorithm: thermal exchange optimization[J]. Advances in Engineering Software, 2017, 110: 69-84. doi: 10.1016/j.advengsoft.2017.03.014
    [27]
    WU L, LIU Q, TIAN X, et al. A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems[J]. Knowledge-Based Systems, 2018, 144: 153-173. doi: 10.1016/j.knosys.2017.12.031
    [28]
    PRAYOGO D, CHENG M Y, WU Y W, et al. Differential big bang-big crunch algorithm for construction-engineering design optimization[J]. Automation in Construction, 2018, 85: 290-304. doi: 10.1016/j.autcon.2017.10.019
    [29]
    MIRJALILI S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83: 80-98. doi: 10.1016/j.advengsoft.2015.01.010
    [30]
    GANDOMI A H, YANG X S, ALAVI A H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems[J]. Engineering with Computers, 2013, 29(1): 17-35. doi: 10.1007/s00366-011-0241-y
  • Relative Articles

    [1]NI Fei, FAN Lin, XU Junqi, LIN Guobin, JIA Wantao. Global Sensitivity Analysis of Single-Point Levitation System for High-Speed Maglev Train Based on Sobol’ Method[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 812-822. doi: 10.3969/j.issn.0258-2724.20240545
    [2]ZHOU Guohua, XUE Ning, BI Qiang. Improved and Fast Global Maximum Power Point Tracking Algorithm of Photovoltaic Power Generation System[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1266-1274. doi: 10.3969/j.issn.0258-2724.20220863
    [3]LIU Quanmin, YE Xiaoyi, SONG Lizhong, SUN Yifei, LIU Linya. Dynamic Characteristic Analysis of Constrained Damping Plate Based on Iterative Revised Modal Strain Energy Method[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1311-1317, 1431. doi: 10.3969/j.issn.0258-2724.20220414
    [4]LIU Junqi, ZHANG Zeqiang, GONG Juhua, ZHANG Yu. Modeling and Optimization Method of Constrained Corridor Allocation Problem[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1376-1385. doi: 10.3969/j.issn.0258-2724.20200803
    [5]DENG Ping, XIE Xue. An NLOS Environment Location Algorithm Based on Geometric Constraint and Iteration[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 666-672. doi: 10.3969/j.issn.0258-2724.20200094
    [6]SONG Pengyan, LÜ, Dagang, YU Xiaohui, WANG Guangyuan. Probability Density Evolution Analysis for Stochastic Dynamic Seismic Responses of Structures Based on Improved Point Estimation Method[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 227-232. doi: 10.3969/j.issn.0258-2724.2014.02.007
    [7]HUANG Qiang, FAN Dongming. Comparison of Short Arc Integral Approach and Average Acceleration Approach in Gravity Field Recovery[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 455-459,480. doi: 10.3969/j.issn.0258-2724.2013.03.010
    [8]DAI Chao-Hua, CHEN Wei-Rong, SHU Yun-Fang, ZHENG Yong-Kang, LI Ai, . IIR Digital Filter Design via Seeker Optimization Algorithm[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 871-876.
    [9]WU Guangning, FU Longhai, WANG Hao, LI Jin. Optimal Design of Grounding Grid Based on Improved Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2007, 20(2): 169-174.
    [10]LIAO Cheng, WEI Tao, CHEN Wei. Integer Coded Differential Evolution Strategy and Application to Microwave Imaging[J]. Journal of Southwest Jiaotong University, 2007, 20(6): 647-652.
    [11]NIChang-jian, CUIPeng, XIANG Rui. Universal Immune Evolutionary Algorithm for Interval-Constrained Optim ization Problem s[J]. Journal of Southwest Jiaotong University, 2005, 18(4): 548-552.
    [12]YAN Qi-xiang, LIUHao-wu, XIA Chun. Iterative Algorithm for Fluid-Structure Coupling System Based on Improved Wilson-θMethod[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 204-208.
    [13]YANG Zhong-chao. The Parallel Computation of Steady Navier-Stokes Equations with Bi-CG Iterative Method Based on EBE Technique[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 142-145.
    [14]ZHANG Zhi-yuan, HE Chuan. A Genetic Algorithm Based on Uniform Design Paralleled with Genetic Operation[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 536-340.
    [15]LIU Chang-hong, CHEN Qiu. Optimality Criterion of the Significant Failure Modes of Engineering Structures[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 620-623.
    [16]LILi, ZHANGJian, CHEN Yong. On the Homotopy Iteration Method and Its Application in the Mechanism Problems[J]. Journal of Southwest Jiaotong University, 2000, 13(1): 57-60.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.5 %FULLTEXT: 23.5 %META: 62.6 %META: 62.6 %PDF: 13.9 %PDF: 13.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 26.6 %其他: 26.6 %China: 0.4 %China: 0.4 %Seattle: 0.2 %Seattle: 0.2 %United States: 0.2 %United States: 0.2 %上海: 0.9 %上海: 0.9 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %六安: 0.2 %六安: 0.2 %兰州: 0.5 %兰州: 0.5 %北京: 4.4 %北京: 4.4 %十堰: 0.7 %十堰: 0.7 %南京: 0.4 %南京: 0.4 %南安普敦: 0.2 %南安普敦: 0.2 %南昌: 0.2 %南昌: 0.2 %南通: 0.2 %南通: 0.2 %吉安: 0.2 %吉安: 0.2 %呼和浩特: 0.4 %呼和浩特: 0.4 %咸宁: 0.5 %咸宁: 0.5 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.9 %哥伦布: 0.9 %嘉兴: 0.2 %嘉兴: 0.2 %大庆: 0.2 %大庆: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.4 %太原: 0.4 %宣城: 1.2 %宣城: 1.2 %山景城: 0.4 %山景城: 0.4 %常州: 0.4 %常州: 0.4 %平顶山: 0.2 %平顶山: 0.2 %廊坊: 0.9 %廊坊: 0.9 %张家口: 4.8 %张家口: 4.8 %成都: 0.2 %成都: 0.2 %扬州: 1.4 %扬州: 1.4 %昆明: 0.4 %昆明: 0.4 %棉花堡: 0.2 %棉花堡: 0.2 %武汉: 0.4 %武汉: 0.4 %池州: 0.7 %池州: 0.7 %河池: 0.2 %河池: 0.2 %济南: 0.2 %济南: 0.2 %淄博: 0.2 %淄博: 0.2 %温州: 0.7 %温州: 0.7 %湖州: 0.2 %湖州: 0.2 %漯河: 3.5 %漯河: 3.5 %焦作: 0.4 %焦作: 0.4 %珠海: 0.4 %珠海: 0.4 %石家庄: 6.7 %石家庄: 6.7 %福州: 0.2 %福州: 0.2 %芒廷维尤: 16.6 %芒廷维尤: 16.6 %芝加哥: 0.7 %芝加哥: 0.7 %荆州: 0.2 %荆州: 0.2 %衡水: 0.7 %衡水: 0.7 %衡阳: 0.5 %衡阳: 0.5 %西宁: 9.9 %西宁: 9.9 %西安: 1.1 %西安: 1.1 %诺沃克: 3.4 %诺沃克: 3.4 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.7 %运城: 0.7 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.9 %邯郸: 0.9 %郑州: 1.1 %郑州: 1.1 %重庆: 1.1 %重庆: 1.1 %银川: 0.2 %银川: 0.2 %长沙: 0.7 %长沙: 0.7 %青岛: 0.4 %青岛: 0.4 %黔东南: 0.2 %黔东南: 0.2 %其他ChinaSeattleUnited States上海乌鲁木齐六安兰州北京十堰南京南安普敦南昌南通吉安呼和浩特咸宁哈尔滨哥伦布嘉兴大庆天津太原宣城山景城常州平顶山廊坊张家口成都扬州昆明棉花堡武汉池州河池济南淄博温州湖州漯河焦作珠海石家庄福州芒廷维尤芝加哥荆州衡水衡阳西宁西安诺沃克贵阳运城遵义邯郸郑州重庆银川长沙青岛黔东南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(10)

    Article views(354) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return