Citation: | LIU Junqi, ZHANG Zeqiang, GONG Juhua, ZHANG Yu. Modeling and Optimization Method of Constrained Corridor Allocation Problem[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1376-1385. doi: 10.3969/j.issn.0258-2724.20200803 |
In order to study the influence of facility relationship on layout in corridor allocation problem, An integer programming model considering location and relationship constraints is constructed, and a hybrid clonal selection algorithm based on clonal selection algorithm is proposed to solve the problem. Before clonal operation, a new 2-opt operation based on problem characteristics is added. Then, tabu search operation is carried out for the optimal individuals in the generated population, mutation operation is carried out for other individuals and adaptive mutation probability is set. The model is accurately solved to verify the correctness of the model and the solution results provide a theoretical basis for the algorithm. Applying the proposed algorithm to test 42−49 scale examples of constrained corridor allocation problem and basic corridor allocation problem respectively. The results are compared with clonal selection algorithm, genetic Algorithm, Scatter Search, flower pollination algorithm and fireworks algorithm. The results show that the hybrid clone selection algorithm can achieve the solution effect of the current advanced algorithm and perform better in the examples sko-42-04 and sko-49-03.
[1] |
ANJOS M F, VIEIRA M V C. Mathematical optimization approaches for facility layout problems: the state-of-the-art and future research directions[J]. European Journal of Operational Research, 2017, 261(1): 1-16. doi: 10.1016/j.ejor.2017.01.049
|
[2] |
HOSSEINI-NASAB H, FEREIDOUNI S, FATEMI GHOMI S M T, et al. Classification of facility layout problems: a review study[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1/2/3/4): 957-977.
|
[3] |
AMARAL A R S. The corridor allocation problem[J]. Computers and Operations Research, 2012, 39(12): 3325-3330.
|
[4] |
GHOSH D, KOTHARI R. Population heuristics for the corridor allocation problem[J]. Iima Working Papers, 2012, 98(2): 33-40.
|
[5] |
AHONEN H, DE ALVARENGA A G, AMARAL A R S. Simulated annealing and tabu search approaches for the corridor allocation problem[J]. European Journal of Operational Research, 2014, 232(1): 221-233. doi: 10.1016/j.ejor.2013.07.010
|
[6] |
KALITA Z, DATTA D. Solving the bi-objective corridor allocation problem using a permutation-based genetic algorithm[J]. Computers & Operations Research, 2014, 52: 123-134.
|
[7] |
KALITA Z, DATTA D, PALUBECKIS G. Bi-objective corridor allocation problem using a permutation-based genetic algorithm hybridized with a local search technique[J]. Soft Computing, 2019, 23(3): 961-986. doi: 10.1007/s00500-017-2807-0
|
[8] |
ZHANG Z Q, MAO L L, GUAN C, et al. An improved scatter search algorithm for the corridor allocation problem considering corridor width[J]. Soft Computing, 2020, 24(1): 461-481. doi: 10.1007/s00500-019-03925-4
|
[9] |
刘思璐,张则强,管超,等. 考虑设施深度的过道布置问题及改进烟花算法求解方法[J]. 控制与决策,2020,35(1): 45-54. doi: 10.13195/j.kzyjc.2018.0720
LIU Silu, ZHANG Zeqiang, GUAN Chao, et al. Improved fireworks algorithm for the corridor allocation problem with facility depth[J]. Control and Decision, 2020, 35(1): 45-54. doi: 10.13195/j.kzyjc.2018.0720
|
[10] |
管超,张则强,毛丽丽,等. 双层过道布置问题的混合整数规划模型及启发式求解方法[J]. 计算机集成制造系统,2018,24(8): 1972-1982. doi: 10.13196/j.cims.2018.08.009
GUAN Chao, ZHANG Zeqiang, MAO Lili, et al. Mixed integer programming model and heuristic method for double-layer corridor allocation problem[J]. Computer Integrated Manufacturing Systems, 2018, 24(8): 1972-1982. doi: 10.13196/j.cims.2018.08.009
|
[11] |
GUAN C, ZHANG Z Q, LI Y P. A flower pollination algorithm for the double-floor corridor allocation problem[J]. International Journal of Production Research, 2019, 57(20): 6506-6527. doi: 10.1080/00207543.2019.1566673
|
[12] |
管超,张则强,朱立夏,等. 双层过道布置问题的混合整数非线性规划模型及两阶段改进模拟退火算法[J]. 中国机械工程,2019,30(8): 975-983. doi: 10.3969/j.issn.1004-132X.2019.08.014
GUAN Chao, ZHANG Zeqiang, ZHU Lixia, et al. A MINLP model and improved simulated annealing algorithm for double-layer corridor allocation problem[J]. China Mechanical Engineering, 2019, 30(8): 975-983. doi: 10.3969/j.issn.1004-132X.2019.08.014
|
[13] |
刘俊琦,张则强,管超,等. 基于多纵向传输通道的双层过道布置问题建模与优化[J]. 计算机集成制造系统,2022,28(2): 481-494. doi: 10.13196/j.cims.2022.02.013
LIU Junqi, ZHANG Zeqiang, GUAN Chao, et al. Modeling and optimization of double floor corridor allocation problem based on multi-longitudinal transmission channels[J]. Computer Integrated Manufacturing Systems, 2022, 28(2): 481-494. doi: 10.13196/j.cims.2022.02.013
|
[14] |
王沙沙,张则强,刘俊琦,等. 多路径交互环形过道布置问题建模及改进蚁狮算法优化[J]. 计算机集成制造系统,2021,27(8): 2237-2247. doi: 10.13196/j.cims.2021.08.007
WANG Shasha, ZHANG Zeqiang, LIU Junqi, et al. Modeling of multi-path interactive annular corridor allocation problem and optimization of improved ant-lion algorithm[J]. Computer Integrated Manufacturing Systems, 2021, 27(8): 2237-2247. doi: 10.13196/j.cims.2021.08.007
|
[15] | |
[16] |
KALITA Z, DATTA D. Corridor allocation as a constrained optimization problem using a permutation-based multi-objective genetic algorithm[J]. Nature-Inspired Methods for Metaheuristics Optimization: Algorithms and Applications in Science and Engineering, 2020, 16: 335-358.
|
[17] |
LIU J Q, ZHANG Z Q, CHEN F, et al. A novel hybrid immune clonal selection algorithm for the constrained corridor allocation problem[J]. Journal of Intelligent Manufacturing, 2020, 33(4): 953-972.
|
[18] |
GUO Y W, MILEHAM A R, OWEN G W, et al. Operation sequencing optimization using a particle swarm optimization approach[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2006, 220(12): 1945-1958. doi: 10.1243/09544054JEM647
|
[19] |
张则强,汪开普,朱立夏,等. 多目标U型拆卸线平衡问题的Pareto蚁群遗传算法[J]. 西南交通大学学报,2018,53(3): 628-637,660. doi: 10.3969/j.issn.0258-2724.2018.03.026
ZHANG Zeqiang, WANG Kaipu, ZHU Lixia, et al. Pareto hybrid ant colony and genetic algorithm for multi-objective U-shaped disassembly line balancing problem[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 628-637,660. doi: 10.3969/j.issn.0258-2724.2018.03.026
|
[20] |
KALITA Z, DATTA D. A constrained single-row facility layout problem[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(5/6/7/8): 2173-2184.
|
[21] |
LIU S L, ZHANG Z Q, GUAN C, et al. An improved fireworks algorithm for the constrained single-row facility layout problem[J]. International Journal of Production Research, 2021, 59(8): 2309-2327. doi: 10.1080/00207543.2020.1730465
|
[22] |
高锋阳,李昭君,袁成,等. 含特殊负荷的配电网分层故障定位方法[J]. 西南交通大学学报,2020,55(3): 570-580.
GAO Fengyang, LI Zhaojun, YUAN Cheng, et al. Hierarchical fault location method for distribution network with special load[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 570-580.
|
[23] |
徐长安,倪少权,陈钉均. 基于两阶段算法的运行图与天窗协同优化[J]. 西南交通大学学报,2020,55(4): 882-888.
XU Changan, NI Shaoquan, CHEN Dingjun. Collaborative optimization for timetable and maintenance window based on two-stage algorithm[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 882-888.
|
[24] |
XIA Y K, FU Z. An adaptive tabu search algorithm for the open vehicle routing problem with split deliveries by order[J]. Wireless Personal Communications, 2018, 103(1): 595-609. doi: 10.1007/s11277-018-5464-4
|
[25] |
ZHOU B H, WU Q. An improved immune clonal selection algorithm for bi-objective robotic assemble line balancing problems considering time and space constraints[J]. Engineering Computations, 2019, 36(6): 1868-1892. doi: 10.1108/EC-11-2018-0512
|
[26] |
左兴权,王春露,赵新超. 一种结合多目标免疫算法和线性规划的双行设备布局方法[J]. 自动化学报,2015,41(3): 528-540.
ZUO Xingquan, WANG Chunlu, ZHAO Xinchao. Combining multi-objective immune algorithm and linear programming for double row layout problem[J]. Acta Automatica Sinica, 2015, 41(3): 528-540.
|
[27] |
贾林,张则强,李六柯,等. 考虑面积成本的双目标环形过道布置建模及改进禁忌搜索优化[J]. 信息与控制,2019,48(4): 477-485.
JIA Lin, ZHANG Zeqiang, LI Liuke, et al. Modeling and improved tabu search optimization for double objective annular corridor allocation considering area cost[J]. Information and Control, 2019, 48(4): 477-485.
|
[28] |
任子武,伞冶. 自适应遗传算法的改进及在系统辨识中应用研究[J]. 系统仿真学报,2006,18(1): 41-43,66. doi: 10.3969/j.issn.1004-731X.2006.01.011
REN Ziwu, SAN Ye. Improved adaptive genetic algorithm and its application research in parameter identification[J]. Journal of System Simulation, 2006, 18(1): 41-43,66. doi: 10.3969/j.issn.1004-731X.2006.01.011
|
[29] |
徐岩,郅静. 基于改进自适应遗传算法的PMU优化配置[J]. 电力系统保护与控制,2015,43(2): 55-62. doi: 10.7667/j.issn.1674-3415.2015.02.009
XU Yan, ZHI Jing. Optimal PMU configuration based on improved adaptive genetic algorithm[J]. Power System Protection and Control, 2015, 43(2): 55-62. doi: 10.7667/j.issn.1674-3415.2015.02.009
|
[30] |
耿敬,覃天意,李明伟,等. 基于进化ANSYS的防波堤结构智能优化方法[J]. 华中科技大学学报(自然科学版),2020,48(10): 86-91.
GENG Jing, QIN Tianyi, LI Mingwei, et al. Intelligent optimization method of breakwater structure based on evolutionary ANSYS[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(10): 86-91.
|
[31] |
LIU J Q, ZHANG Z Q, ZENG Y Q. Modeling and optimization of double floor corridor allocation problem considering double channel unidirectional elevator[C]//Conference Proceedings of the 8th International Symposium on Project Management, China (ISPM2020). Beijing: [s.n.], 2020: 482-493.
|
[32] |
魏彤辉,左文杰,郑宏伟,等. 基于降维算法的车身可靠性优化[J]. 汽车工程,2020,42(7): 941-948.
WEI Tonghui, ZUO Wenjie, ZHENG Hongwei, et al. Reliability-based design optimization of car BodyBased on dimension reduction method[J]. Automotive Engineering, 2020, 42(7): 941-948.
|