• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHOU Guohua, XUE Ning, BI Qiang. Improved and Fast Global Maximum Power Point Tracking Algorithm of Photovoltaic Power Generation System[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1266-1274. doi: 10.3969/j.issn.0258-2724.20220863
Citation: ZHOU Guohua, XUE Ning, BI Qiang. Improved and Fast Global Maximum Power Point Tracking Algorithm of Photovoltaic Power Generation System[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1266-1274. doi: 10.3969/j.issn.0258-2724.20220863

Improved and Fast Global Maximum Power Point Tracking Algorithm of Photovoltaic Power Generation System

doi: 10.3969/j.issn.0258-2724.20220863
  • Received Date: 14 Dec 2022
  • Rev Recd Date: 10 Mar 2023
  • Available Online: 14 Oct 2024
  • Publish Date: 18 Mar 2023
  • In order to improve the energy utilization of photovoltaic (PV) power generation under partial shading conditions (PSCs), an improved and fast global maximum power point tracking (GMPPT) algorithm was proposed. Firstly, the output characteristics of PV array under PSCs were researched, and the output curve of PV array was divided into constant current region (CCR) and constant voltage region (CVR) according to the relationship between knee point and open circuit voltage. Then, the operation principles of the traditional maximum power trapezium (MPT) algorithm and the improved and fast GMPPT algorithm were analyzed. The improved and fast GMPPT algorithm is based on the MPT algorithm, where the search interval is limited by dynamic upper and lower limits of voltage, and CCR with a long adjustment time was skipped to further improve the tracking speed. Finally, the effectiveness of the proposed algorithm was verified by simulation and experiment. The experimental results reveal that the minimum tracking time of the improved and fast GMPPT algorithm is 4.0 s, and the scanning voltage and the energy loss of the proposed algorithm are 17.34 V and 98.19 J, respectively. Compared with the traditional global scanning algorithm and the MPT algorithm, the proposed algorithm decreases tracking time by 68.25% and 68.00%, lowers scanning voltage by 74.86% and 75.63%, and reduces energy loss by 58.19% and 62.31%, respectively.

     

  • [1]
    GHANBARI T. Hot spot detection and prevention using a simple method in photovoltaic panels[J]. IET Generation, Transmission & Distribution, 2017, 11(4): 883-890.
    [2]
    杨永恒,周克亮. 光伏电池建模及MPPT控制策略[J]. 电工技术学报,2011,26(增1): 229-234.

    YANG Yongheng, ZHOU Keliang. Photovoltaic cell modeling and MPPT control strategies[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 229-234.
    [3]
    AHMED J, SALAM Z. An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1487-1496. doi: 10.1109/TSTE.2018.2791968
    [4]
    韩国鹏,薛聪聪,王伟,等. 应对移动阴影的车载光伏步进扫描快速功率追踪[J]. 西南交通大学学报,2021,56(2): 354-362.

    HAN Guopeng, XUE Congcong, WANG Wei, et al. Fast power tracking step-scanning method of vehicle-mounted photovoltaic system with moving shadows[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 354-362.
    [5]
    陈维荣,傅王璇,韩莹,等. 计及需求侧的风-光-氢多能互补微电网优化配置[J]. 西南交通大学学报,2021,56(3): 640-649.

    CHEN Weirong, FU Wangxuan, HAN Ying, et al. Optimal configuration of wind-solar-hydrogen multi-energy complementary microgrid with demand side[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 640-649.
    [6]
    VELASCO-QUESADA G, GUINJOAN-GISPERT F, PIQUE-LOPEZ R, et al. Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems[J]. IEEE Transactions on Industrial Electronics, 2009, 56(11): 4319-4331. doi: 10.1109/TIE.2009.2024664
    [7]
    NGUYEN D, LEHMAN B. An adaptive solar photovoltaic array using model-based reconfiguration algorithm[J]. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2644-2654. doi: 10.1109/TIE.2008.924169
    [8]
    BISWAS J, KAMATH A M, GOPI A K, et al. Design, architecture, and real-time distributed coordination DMPPT algorithm for PV systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(3): 1418-1433. doi: 10.1109/JESTPE.2017.2756698
    [9]
    ISHAQUE K, SALAM Z. A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition[J]. IEEE Transactions on Industrial Electronics, 2013, 60(8): 3195-3206.
    [10]
    陈维荣,王伟颖,郑义斌,等. 局部阴影光伏发电系统中基于改进PSO的MPPT控制[J]. 西南交通大学学报,2018,53(6): 1095-1101,1129. doi: 10.3969/j.issn.0258-2724.2018.06.001

    CHEN Weirong, WANG Weiying, ZHENG Yibin, et al. MPPT control of partial shadow photovoltaic generation system based on improved PSO algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1095-1101,1129. doi: 10.3969/j.issn.0258-2724.2018.06.001
    [11]
    NGUYEN T L, LOW K S. A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems[J]. IEEE Transactions on Industrial Electronics, 2010, 57(10): 3456-3467. doi: 10.1109/TIE.2009.2039450
    [12]
    MALATHY S, RAMAPRABHA R. Maximum power point tracking algorithm of SPVA under inhomogeneous irradiation conditions: a modified Fibonacci search based approach[C]//2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS). Honolulu: IEEE, 2017: 487-492.
    [13]
    MURTAZA A, CHIABERGE M, SPERTINO F, et al. A maximum power point tracking technique based on bypass diode mechanism for PV arrays under partial shading[J]. Energy and Buildings, 2014, 73: 13-25. doi: 10.1016/j.enbuild.2014.01.018
    [14]
    王云平,李颖,阮新波. 基于局部阴影下光伏阵列电流特性的最大功率点跟踪算法[J]. 电工技术学报,2016,31(14): 201-210,218. doi: 10.3969/j.issn.1000-6753.2016.14.023

    WANG Yunping, LI Ying, RUAN Xinbo. Maximum power point tracking algorithm for photovoltaic array under partial shading based on current property[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 201-210,218. doi: 10.3969/j.issn.1000-6753.2016.14.023
    [15]
    FURTADO A M S, BRADASCHIA F, CAVALCANTI M C, et al. A reduced voltage range global maximum power point tracking algorithm for photovoltaic systems under partial shading conditions[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3252-3262. doi: 10.1109/TIE.2017.2750623
    [16]
    AQUIB M, JAIN S, AGARWAL V. A time-based global maximum power point tracking technique for PV system[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 393-402. doi: 10.1109/TPEL.2019.2915774
    [17]
    AQUIB M, JAIN S. A global maximum power point tracking technique based on current source region detection of I-V curve[C]//2018 IEEMA Engineer Infinite Conference (eTechNxT). New Delhi: IEEE, 2018: 1-5.
    [18]
    王云平. 局部阴影条件下光伏阵列结构、MPPT方法及阻抗匹配变换器研究[D]. 南京: 南京航空航天大学,2018.
    [19]
    WANG Y P, LI Y, RUAN X B. High-accuracy and fast-speed MPPT methods for PV string under partially shaded conditions[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 235-245. doi: 10.1109/TIE.2015.2465897
    [20]
    丁金磊,程晓舫,翟载腾,等. 太阳电池填充因子随日照强度变化的理论分析与计算[J]. 中国工程科学,2007,9(6): 82-87. doi: 10.3969/j.issn.1009-1742.2007.06.015

    DING Jinlei, CHENG Xiaofang, ZHAI Zaiteng, et al. Theoretical analysis and calculation for filling factor of solar cell varying along with illumination intensity[J]. Strategic Study of CAE, 2007, 9(6): 82-87. doi: 10.3969/j.issn.1009-1742.2007.06.015
  • Relative Articles

    [1]MA Qun, YI Xingli, YAO Yuan, QIAO Jinchuang, ZHONG Wensheng. Re-adhesion Performance of High-Power Permanent-Magnet Direct-Drive Bogie-Suspended Locomotives[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 921-929. doi: 10.3969/j.issn.0258-2724.20240652
    [2]SU Qinghua, HONG Nan, HU Zhongbo. Fixed Point Evolution Algorithm[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 175-184. doi: 10.3969/j.issn.0258-2724.20220079
    [3]WEI Jingbo, LUO Hao, GUAN Zijin. Global Fast Terminal Sliding Mode Control for Maglev Ball System Based on Disturbance Observer[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 836-844. doi: 10.3969/j.issn.0258-2724.20210941
    [4]LIU Yuanli, LI Qunzhan. Day-Ahead Optimal Scheduling of Co-phase Traction Power Supply System with Photovoltaic and Hybrid Energy Storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 30-39. doi: 10.3969/j.issn.0258-2724.20200534
    [5]HAN Guopeng, XUE Congcong, WANG Wei, CHEN Weirong, GUO Ai, DAI Chaohua, LIU Zhengjie. Fast Power Tracking Step-Scanning Method of Vehicle-Mounted Photovoltaic System with Moving Shadows[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 354-362. doi: 10.3969/j.issn.0258-2724.20191183
    [6]CHEN Weirong, WANG Xuan, LI Qi. Parallel Interaction Influence of Single-Stage Photovoltaic Grid-Connected Multi-Inverter System[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 811-819. doi: 10.3969/j.issn.0258-2724.20180900
    [7]CHEN Weirong, WANG Weiying, ZHENG Yibin, ZHENG Yongkang, LI Qi. MPPT Control of Partial Shadow Photovoltaic Generation System Based on Improved PSO Algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1095-1101, 1129. doi: 10.3969/j.issn.0258-2724.2018.06.001
    [8]LIU Zhixiang, LI Lun, HAN Zhe, PAN Jungang, DING Yi. Current Following Segmented PID Control of Air Supply System in Heavy-Duty PEMFC System[J]. Journal of Southwest Jiaotong University, 2016, 29(3): 437-445. doi: 10.3969/j.issn.0258-2724.2016.03.004
    [9]LI Qi, YANG Hanqing, HAN Ying, CHEN Weirong. Method of Parameter Coordination Optimization for Grid-Connected Photovoltaic System[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 894-901. doi: 10.3969/j.issn.0258-2724.2016.05.011
    [10]YOU Zhiyu, CHENG Weirong, PENG Yun, LI Qi. Temperature Control of High-Power Self-Humidifying PEMFC with Air Cooling[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 44-50. doi: 10.3969/j.issn.0258-2724.2015.01.007
    [11]PENG Fei, LIU Zhixiang, CHEN Weirong. Novel PV/Li-Ion Energy Storage System Based on Non-balancing Cell Management[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 920-927. doi: 10.3969/j.issn.0258-2724.2014.05.027
    [12]SHUAI Qi, YAO Xifan. Optimization Algorithm for Flexible Job-Shop Scheduling Problem Based on Heuristic Rules and Adjustment of Critical Paths[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 509-515. doi: 10.3969/j.issn.0258-2724.2012.03.025
    [13]DAI Chao-Hua, CHEN Wei-Rong, SHU Yun-Fang, ZHENG Yong-Kang, LI Ai, . IIR Digital Filter Design via Seeker Optimization Algorithm[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 871-876.
    [14]CAO Taiqiang, XU Jianping, XU Shungang. Freewheeling Current and Suppression in Inverter of Stand-Alone Photovoltaic Lighting System[J]. Journal of Southwest Jiaotong University, 2008, 21(4): 504-508.
    [15]LIAO Cheng, WEI Tao, CHEN Wei. Integer Coded Differential Evolution Strategy and Application to Microwave Imaging[J]. Journal of Southwest Jiaotong University, 2007, 20(6): 647-652.
    [16]MEI Jinsong, YANG Yidong, WANG Xinhua, CHEN Dongmei. Fly-by-Light Point-to-Point Line of Nap-of-the-Earth Flight Control System for Helicopter[J]. Journal of Southwest Jiaotong University, 2006, 19(6): 748-752.
    [17]RENDian-bo, ZHANG Ji-ye. G lobalExponential Stability of a C lass of Interconnected Large-Scale System swith Time Delays[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 343-346.
    [18]CUI Xian-bo, YANHai-feng. Design of the Assistant Decision System for Train Operation Adjustment[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 520-525.
    [19]ZHANG Zhi-yuan, HE Chuan. A Genetic Algorithm Based on Uniform Design Paralleled with Genetic Operation[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 536-340.
  • Cited by

    Periodical cited type(1)

    1. 张希,陆大辉,金立强,闫冠宇,包伯成. 开关纹波交互作用下负载变换器的稳定性机理. 工程科学与技术. 2025(02): 256-266 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.9 %FULLTEXT: 17.9 %META: 68.2 %META: 68.2 %PDF: 13.8 %PDF: 13.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 26.5 %其他: 26.5 %其他: 0.3 %其他: 0.3 %上海: 1.2 %上海: 1.2 %东营: 0.3 %东营: 0.3 %兰州: 0.9 %兰州: 0.9 %北京: 2.1 %北京: 2.1 %南宁: 0.6 %南宁: 0.6 %南昌: 0.3 %南昌: 0.3 %呼和浩特: 0.3 %呼和浩特: 0.3 %哥伦布: 0.6 %哥伦布: 0.6 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.9 %嘉兴: 0.9 %大庆: 0.3 %大庆: 0.3 %天津: 2.1 %天津: 2.1 %宣城: 0.3 %宣城: 0.3 %张家口: 7.4 %张家口: 7.4 %成都: 3.8 %成都: 3.8 %扬州: 2.1 %扬州: 2.1 %无锡: 0.9 %无锡: 0.9 %昆明: 1.5 %昆明: 1.5 %昭通: 0.3 %昭通: 0.3 %杭州: 0.9 %杭州: 0.9 %榆林: 0.3 %榆林: 0.3 %武汉: 0.3 %武汉: 0.3 %池州: 1.8 %池州: 1.8 %济南: 0.3 %济南: 0.3 %温州: 0.9 %温州: 0.9 %漯河: 3.2 %漯河: 3.2 %烟台: 0.3 %烟台: 0.3 %焦作: 0.3 %焦作: 0.3 %石家庄: 3.2 %石家庄: 3.2 %肇庆: 0.3 %肇庆: 0.3 %芒廷维尤: 7.1 %芒廷维尤: 7.1 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.9 %苏州: 0.9 %衢州: 0.3 %衢州: 0.3 %西宁: 10.9 %西宁: 10.9 %西安: 0.6 %西安: 0.6 %诺沃克: 3.5 %诺沃克: 3.5 %贵阳: 0.3 %贵阳: 0.3 %运城: 0.9 %运城: 0.9 %郑州: 7.4 %郑州: 7.4 %银川: 0.3 %银川: 0.3 %长春: 0.9 %长春: 0.9 %长沙: 0.9 %长沙: 0.9 %随州: 0.3 %随州: 0.3 %齐齐哈尔: 0.3 %齐齐哈尔: 0.3 %其他其他上海东营兰州北京南宁南昌呼和浩特哥伦布唐山嘉兴大庆天津宣城张家口成都扬州无锡昆明昭通杭州榆林武汉池州济南温州漯河烟台焦作石家庄肇庆芒廷维尤芝加哥苏州衢州西宁西安诺沃克贵阳运城郑州银川长春长沙随州齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article views(231) PDF downloads(47) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return