• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
YOU Zhichao, GAO Hongli, GUO Liang, CHEN Yucheng, LIU Yuekai. Equipment Deployment of Direct Tool-Condition Monitoring Based on Improved Information Entropy[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 160-167. doi: 10.3969/j.issn.0258-2724.20220025
Citation: YOU Zhichao, GAO Hongli, GUO Liang, CHEN Yucheng, LIU Yuekai. Equipment Deployment of Direct Tool-Condition Monitoring Based on Improved Information Entropy[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 160-167. doi: 10.3969/j.issn.0258-2724.20220025

Equipment Deployment of Direct Tool-Condition Monitoring Based on Improved Information Entropy

doi: 10.3969/j.issn.0258-2724.20220025
  • Received Date: 10 Jan 2021
  • Rev Recd Date: 17 Mar 2022
  • Available Online: 13 Jan 2023
  • Publish Date: 28 Mar 2022
  • In-situ tool-condition monitoring system based on machine vision realizes tool wear measurement and condition assessment without removing the tool. However, the system deployment parameters that are closely related to the quality of the tool image are rarely studied. To this end, a polynomial regression model based on improved information entropy is constructed to realize the optimal deployment of the tool-condition monitoring system. First, the adaptive threshold method is used to remove the interference of background elements in the captured tool image, and the imaging quality of the tool wear area is evaluated by the information entropy metric. Then, a polynomial regression model with respect to the camera working distance, exposure time, and the proposed evaluation metric is constructed to describe the mapping relationship between the deployment parameters and the proposed evaluation metric. Finally, the least squares method is used to solve the coefficients of the polynomial model and obtain the optimal deployment parameters. Orthogonal experiments are designed to ensure that the factor levels of independent variables cover the optimal deployment parameters. The experimental results show that there is a main effect relationship between the proposed evaluation metric and deployment parameters, such as working distance and exposure time, which is in line with the changing rule of optical imaging systems. Compared with nonlinear regression prediction models such as support vector machine, decision tree and K-nearest neighbor (KNN), the cubic polynomial regression model has the smallest prediction error, with its mean absolute error, mean square error, and root mean square error being 0.022631, 0.00068, and 0.026069, respectively. The measurement accuracy of the tool image captured under the optimal deployment parameters reaches 96.76%, increased by 0.74%, demonstrating that it meets the accuracy requirements of tool condition monitoring.

     

  • [1]
    高宏力,许明恒,傅攀. 基于集成神经网络的刀具磨损量监测[J]. 西南交通大学学报,2005,40(5): 641-644, 653.

    GAO Hongli, XU Mingheng, FU Pan. Tool wear mon-itoring based on integrated neutral networks[J]. Journal of Southwest Jiaotong University, 2005, 40(5): 641-644, 653.
    [2]
    卢志远,马鹏飞,肖江林,等. 基于机床信息的加工过程刀具磨损状态在线监测[J]. 中国机械工程,2019,30(2): 220-225.

    LU Zhiyuan, MA Pengfei, XIAO Jianglin, et al. On-line monitoring of tool wear conditions in machining processes based on machine tool data[J]. China Mechanical Engineering, 2019, 30(2): 220-225.
    [3]
    ZHOU J J, YU J B. Chisel edge wear measurement of high-speed steel twist drills based on machine vision[J]. Computers in Industry, 2021, 128: 103436.1-103436.12. doi: 10.1016/j.compind.2021.103436
    [4]
    胡一星,许黎明,范帆,等. 曲线磨削砂轮廓形的原位视觉检测和误差补偿[J]. 上海交通大学学报,2019,53(6): 654-659.

    HU Yixing, XU Liming, FAN Fan, et al. In-situ vision detection and compensation of wheel profile error in profile grinding[J]. Journal of Shanghai Jiao Tong University, 2019, 53(6): 654-659.
    [5]
    WANG P, LIU Z, GAO R X, et al. Heterogeneous data-driven hybrid machine learning for tool condition prognosis[J]. CIRP Annals, 2019, 68(1): 455-458. doi: 10.1016/j.cirp.2019.03.007
    [6]
    朱锟鹏,李刚. 基于刀具磨损映射关系的微细铣削力理论建模与试验研究[J]. 机械工程学报,2021,57(19): 246-259. doi: 10.3901/JME.2021.19.023

    ZHU Kunpeng, LI Gang. Theoretical modeling and experimental study of micro milling force based on tool wear mapping[J]. Journal of Mechanical Engineering, 2021, 57(19): 246-259. doi: 10.3901/JME.2021.19.023
    [7]
    GUO C Z, MA Z L, GUO X, et al. Fast auto-focusing search algorithm for a high-speed and high-resolution camera based on the image histogram feature function[J]. Applied Optics, 2018, 57(34): F44-F49. doi: 10.1364/AO.57.000F44
    [8]
    KIM J, CHO Y, KIM A. Exposure control using Bayesian optimization based on entropy weighted image gradient[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane: IEEE, 2018: 857-864.
    [9]
    陈健,李诗云,林丽,等. 模糊失真图像无参考质量评价综述[J]. 自动化学报,2022,48(3): 689-711.

    CHEN Jian, LI Shiyun, LIN Li, et al. A review on no-reference quality assessment for blurred image[J]. Acta Automatica Sinica, 2022, 48(3): 689-711.
    [10]
    曹同坤,徐英涛,谈庆瑶. 在刀-屑界面持续润滑刀具切削45钢的性能及润滑机理[J]. 中国机械工程,2021,32(20): 2411-2417,2426.

    CAO Tongkun, XU Yingtao, TAN Qingyao. Cutting performance and lubrication mechanism of cutting 45 steel with tool continuously lubricated at the tool-chip interface[J]. China Mechanical Engineering, 2021, 32(20): 2411-2417,2426.
    [11]
    李杰. 空域无参考图像质量评价方法研究[D]. 武汉: 武汉大学, 2017.
    [12]
    YOU Z C, GAO H L, GUO L, et al. Machine vision based adaptive online condition monitoring for milling cutter under spindle rotation[J]. Mechanical Systems and Signal Processing, 2022, 171: 108904.1-108904.18. doi: 10.1016/j.ymssp.2022.108904
    [13]
    KUMAR A, CHINNAM R B, TSENG F. An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools[J]. Computers & Industrial Engineering, 2019, 128: 1008-1014.
    [14]
    吕晓玲, 宋捷. 大数据挖掘与统计机器学习[M]. 北京: 中国人民大学出版社, 2016.
  • Relative Articles

    [1]GAO Hongli, SUN Yi, GUO Liang, YOU Zhichao, LIU Yuekai, LI Shichao, LEI Yuncong. Research Status and Development Trend of Machining Quality Prediction[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 121-141. doi: 10.3969/j.issn.0258-2724.20220085
    [2]ZHOU Ning, WANG Jundong, LIU Yueping, YANG Xuan, LI Yan, WU Zaixin, ZHANG Weihua. Image Processing Based Method for Measuring Contact Force in Pantograph-Catenary System[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 1-8, 57. doi: 10.3969/j.issn.0258-2724.20210509
    [3]LIU Wei, ZHANG Hao, ZHANG Jian, LI You, PAN Weiguo, LI Qunzhan. Optimal Siting and Sizing forInverter Feedback Devices Applied in Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1355-1362. doi: 10.3969/j.issn.0258-2724.20200402
    [4]ZHENG Qing, DING Guofu. Complexity Measurement Model and Methods of Crowd Intelligence Collaborative Innovation for Design Activities[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 989-994, 1010. doi: 10.3969/j.issn.0258-2724.20200238
    [5]GUO Huiyong, WANG Zhihua, LI Zhengliang. Structural Nonlinear Damage Identification Based on Autoregressive Conditional Heteroskedasticity Conversion Index[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 459-466, 517. doi: 10.3969/j.issn.0258-2724.20180316
    [6]FAN Hong, HOU Yun, LI Bailin, XIONG Ying. Adaptive Detection Algorithm for High-Speed Railway Fasteners by Vision[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 896-902. doi: 10.3969/j.issn.0258-2724.20180496
    [7]PENG Zhenrui, ZHANG Nan, YIN Hong, DONG Kangli. Optimal Sensor Placement of EMU Frame Based on Frequency Response Function[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 402-407, 414. doi: 10.3969/j.issn.0258-2724.20170780
    [8]GONG Wei, QIAO Hongxia, YU Hongfa, MA Haiyan, CHEN Guangfeng. Influence of Multiple Factors on Compressive Strength of Magnesium Oxychloride Cement Concrete[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 366-372. doi: 10.3969/j.issn.0258-2724.20180042
    [9]ZHANG Guoliang, WANG Zhanni, WANG Tian, DU Jixiang. Robot Visual Servoing Control Based on Redundant Features of Sub-pixel Accuracy[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 759-766. doi: 10.3969/j.issn.0258-2724.2016.04.022
    [10]DENG Nian, PENG Qiyuan. Synergy Model of Vertical Structure of High-Speed Railway Dispatching System[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 152-160. doi: 10.3969/j.issn.0258-2724.2016.01.022
    [11]ZHANG Shuaiyi, LI Yongshu, CAI Guolin. Aerial Image Registration Based on Bayesian Decision Theory[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 161-166. doi: 10.3969/j.issn.0258-2724.2015.01.024
    [12]ZHOU Xiu-Yun, HUANG Jian-Guo, FENG Zhong-Zheng. Polycrystalline Silicon Video Inspection System Based on Small Area Tracking[J]. Journal of Southwest Jiaotong University, 2010, 23(3): 430-434. doi: 10. 3969/ j. issn. 0258-2724.
    [13]DU Shengpin, XIONG Ling, DING Weidong. Comprehensive Evaluation of Urban Rail Transit Network Planning Based on Green Transportation Principle[J]. Journal of Southwest Jiaotong University, 2006, 19(3): 284-289.
    [14]XIN Zhihong, HU Pei, YU Xiang. Entropy,Information and Evolution of Structure of Enterprise Organization[J]. Journal of Southwest Jiaotong University, 2006, 19(2): 250-252.
    [15]ZHANGHai-bo, QIANQing-quan, XUGang, SUN Jian-guo. Direct Path Planning for Visual Servo Robot[J]. Journal of Southwest Jiaotong University, 2005, 18(4): 444-448.
    [16]PENG Qiang, JIANGHao. Vision Subsystem and Identification Algorithm for M iroSotLarge Field Soccer-Robot System[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 168-172.
    [17]DENGXiao-hong, ZHANG Jia-shu. NeuralChebyshev OrthogonalPolynom ialEqualizer and ItsAdaptive Algorithm[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 163-168.
    [18]CUIHong-wei, HAN Liu-bing. Spectrum of Polynomial Conjugate OperatorT[J]. Journal of Southwest Jiaotong University, 2004, 17(3): 397-399.
  • Cited by

    Periodical cited type(1)

    1. 郭润兰,张昊,支晓波,尉卫卫. 基于机器视觉的刀具磨损量在机检测研究. 兰州理工大学学报. 2024(06): 33-41 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.8 %FULLTEXT: 21.8 %META: 68.6 %META: 68.6 %PDF: 9.6 %PDF: 9.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.4 %其他: 14.4 %其他: 0.2 %其他: 0.2 %上海: 5.0 %上海: 5.0 %保定: 0.2 %保定: 0.2 %兰州: 0.3 %兰州: 0.3 %包头: 0.2 %包头: 0.2 %北京: 5.5 %北京: 5.5 %厦门: 0.2 %厦门: 0.2 %台州: 0.2 %台州: 0.2 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %大庆: 0.3 %大庆: 0.3 %大连: 0.3 %大连: 0.3 %天津: 0.5 %天津: 0.5 %宁波: 0.3 %宁波: 0.3 %宣城: 0.2 %宣城: 0.2 %山景城: 0.3 %山景城: 0.3 %常州: 0.3 %常州: 0.3 %常德: 0.2 %常德: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 2.2 %张家口: 2.2 %德阳: 0.2 %德阳: 0.2 %成都: 3.3 %成都: 3.3 %扬州: 0.5 %扬州: 0.5 %昆明: 0.5 %昆明: 0.5 %曼谷: 0.2 %曼谷: 0.2 %杭州: 0.6 %杭州: 0.6 %武汉: 0.3 %武汉: 0.3 %汉诺威: 0.5 %汉诺威: 0.5 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.2 %济南: 0.2 %深圳: 0.8 %深圳: 0.8 %温州: 0.2 %温州: 0.2 %湘潭: 0.2 %湘潭: 0.2 %漯河: 0.6 %漯河: 0.6 %烟台: 0.2 %烟台: 0.2 %珠海: 0.3 %珠海: 0.3 %石家庄: 1.1 %石家庄: 1.1 %福州: 0.6 %福州: 0.6 %秦皇岛: 0.3 %秦皇岛: 0.3 %红河: 0.3 %红河: 0.3 %芒廷维尤: 12.9 %芒廷维尤: 12.9 %芝加哥: 0.3 %芝加哥: 0.3 %西宁: 36.0 %西宁: 36.0 %西安: 0.8 %西安: 0.8 %诺沃克: 0.6 %诺沃克: 0.6 %贵阳: 0.9 %贵阳: 0.9 %资阳: 0.2 %资阳: 0.2 %达州: 0.2 %达州: 0.2 %达拉斯: 0.3 %达拉斯: 0.3 %运城: 1.3 %运城: 1.3 %郑州: 1.1 %郑州: 1.1 %重庆: 0.6 %重庆: 0.6 %铜川: 0.2 %铜川: 0.2 %镇江: 0.3 %镇江: 0.3 %长沙: 0.8 %长沙: 0.8 %阿坝: 0.3 %阿坝: 0.3 %青岛: 0.2 %青岛: 0.2 %驻马店: 0.3 %驻马店: 0.3 %其他其他上海保定兰州包头北京厦门台州哈尔滨哥伦布嘉兴大庆大连天津宁波宣城山景城常州常德广州张家口德阳成都扬州昆明曼谷杭州武汉汉诺威沈阳济南深圳温州湘潭漯河烟台珠海石家庄福州秦皇岛红河芒廷维尤芝加哥西宁西安诺沃克贵阳资阳达州达拉斯运城郑州重庆铜川镇江长沙阿坝青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views(434) PDF downloads(61) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return