• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 29 Issue 4
Jul.  2016
Turn off MathJax
Article Contents
ZHANG Guoliang, WANG Zhanni, WANG Tian, DU Jixiang. Robot Visual Servoing Control Based on Redundant Features of Sub-pixel Accuracy[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 759-766. doi: 10.3969/j.issn.0258-2724.2016.04.022
Citation: ZHANG Guoliang, WANG Zhanni, WANG Tian, DU Jixiang. Robot Visual Servoing Control Based on Redundant Features of Sub-pixel Accuracy[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 759-766. doi: 10.3969/j.issn.0258-2724.2016.04.022

Robot Visual Servoing Control Based on Redundant Features of Sub-pixel Accuracy

doi: 10.3969/j.issn.0258-2724.2016.04.022
  • Received Date: 07 Nov 2013
  • Publish Date: 25 Aug 2016
  • To overcome the dependency of a robot visual servoing system on calibration accuracy and pose estimation, a redundant featurebased robot visual servoing control method was proposed via fusing object feature recognition and visual servoing in different stages respectively. Firstly, to address the issue of largescale computation on image processing, a recursive greedy data compression algorithm based on curve vector was designed to speed up the feature extraction process. Secondly, to improve the measurement precision of feature in image space, a subpixel feature extraction method was studied based on the principle of vector orthogonallity. Furthermore, experimental rule of object recognition was proposed based on cooperative object shape and polygon shape fitting. Finally, based on the theory of image visual servoing and the method of task function, redundant visual features in subpixels were selected directly as feedback signals to build controlling model of robot visual servoing. The theoretical analysis and experimental results show that the servoing features can be extracted quickly and stably in complex environments, and the proposed method was robust to the calibration error and depth estimation error.

     

  • loading
  • SADEGHZADEH M, CALVERT D, ABDULLAH H. Self-learning visual servoing of robot manipulator using explanation-based fuzzy neural networks and Q-Learning[J]. Journal of Intelligent and RoboticSystems:Theory and Applications, 2015, 78(1):83-104.
    IBARGURENA, MARTNEZ-OTZETA J M, MAURTUA I. Particle filtering for industrial 6DOF visualservoing[J]. Journal of Intelligent and Robotic Systems:Theory and Applications, 2014, 74(3/4):689-696.
    ALIAKBARPOUR H,TAHRI O, ARAUJO H. Visual servoing of mobile robots using non-central catadioptric cameras[J]. Robotics and Autonomous Systems, 2014, 62(11):1613-1622.
    于乃功,华瑾. 基于ADAMS机器人双目视差位置跟踪方法研究[J]. 计算机测量与控制,2010,18(9):2160-2165.YU Naigong, HUA Jin. Robotic kinematic simulation of position tracking based on binocular disparity[J]. Computer Measurement Control, 2010, 18(9):2160-2165.
    钟建,苏剑波. 基于视觉预测的运动目标实时跟踪系统[J]. 机器人,2010,32(4):516-520.ZHONG Jian, SU Jianbo. A real-time moving object tracking system based on visual prediction[J]. Robot, 2010, 32(4):516-520.
    尹湘云,殷国富,胡晓兵,等. 基于支持矢量机回归的机器人视觉系统定位精度[J]. 机械工程学报,2011,47(1):48-52.YIN Xiangyun, YIN Guofu, HU Xiaobing, et al. Positioning accuracy of robot vision system based on support vector machine regression[J]. Journal of Mechanical Engineering, 2011, 47(1):48-52.
    WU Xuemei, LIU Zhiqiang, LI Hua. A simple method for multivariate calibration with minimization of the prediction relative error[J]. Analytical Methods, 2014, 6(12):4056-4060.
    WANG J P, CHO H. Micropeg and hole alignment using image moments based visual servoing method[J]. IEEE Trans. Industrial Electronics, 2008, 55(3):1286-1293.
    MALIS E, MEZOUAR Y, RIVERS P. Robustness of image-based visual servoing with a calibrated camera in the presence of uncertainties in the three-dimensional structure[J]. Robotics, 2010, 26(1):112-120.
    MARIOTTINI G L, ORIOLO G, PRATTICHIZZO D. Image-based visual servoing for nonholonomic mobile robots using epipolar geometry[J]. Robotics, 2007, 23(1):87-100.
    LI Q, WANG C, Niu W. Tracking of nonholonomic control systems based on visual servoing feedback[C]//Proceedings of the 26th Chinese Control Conference. Zhangjiajie:[s.n.], 2007:459-463.
    郭伟斌,王洪光,姜勇,等. 一种输电线巡检机器人的自动抓线视觉伺服控制[J]. 机器人,2012,34(5):620-627.GUO Weibin, WANG Hongguang, JIANG Yong, et al. Visual servo control for automatic line-grasping of a power transmission line inspection robot[J]. Robot, 2012, 34(5):620-627.
    MUOZ E, MRQUEZ-NEILA P, BAUMELA L. Rationalizing efficient compositional image alignment:the constant jacobian gauss-newton optimization algorithm[J]. International Journal of Computer Vision, 2015, 112(3):354-372.
    TSANAKAS J A,CHRYSOSTOMOU D, BOTSARIS P N, et al. Fault diagnosis of photovoltaic modules through image processing and Canny edge detection on field thermographic measurements[J]. InternationalJournal of Sustainable Energy, 2015, 34(6):351-372.
    LUBIS A A, SUHARJITO A. Brain medical image retrieval using non-negative matrix factorization and canny edge detection[J]. Journal of Multimedia and Ubiquitous Engineering, 2015, 10(4):205-214.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(545) PDF downloads(227) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return