• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 1
Jan.  2024
Recommendations
Compound fault diagnosis method guided by variational mode decomposition for wheelsets and bearings
YI Cai et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2024
Axle-box bearing fault diagnosis based on multiband weighted envelope spectrum
CHEN Bingyan et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2024
Monitoring data-driven prediction of remaining useful life of axle-box bearings for urban rail transit trains
WANG Biao et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2024
Formation mechanism of metro wheel polygonal based on vehicle-track coupling
SHI Yixuan et al., JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY, 2024
Fatigue strength detection method for crankshaft of vehicle internal combustion engine based on dynamics
Cangku Guo, INTERNATIONAL JOURNAL OF VEHICLE STRUCTURES AND SYSTEMS, 2021
Axial movement and rubbing vibration analysis for rotor system with two discs
Jian-zhi PAN;Wei-nan HU;Da-sheng WEI;Li-peng LU et al., JOURNAL OF JILIN UNIVERSITY, 2020
Track defects recognition based on axle-box vibration acceleration and deep-learning techniques
Xianxian Yin et al., STRUCTURAL DURABILITY & HEALTH MONITORING, 2024
Deep learning methods for medical image fusion: a review
Zhou, Tao et al., COMPUTERS IN BIOLOGY AND MEDICINE, 2023
The active rotary inertia driver system for flutter vibration control of bridges and various promising applications
SCIENCE CHINA-TECHNOLOGICAL SCIENCES
A method for the dynamic characteristic analysis of a rotor-rolling bearing system influenced by elastohydrodynamic lubrication
JOURNAL OF SOUND AND VIBRATION, 2025
Powered by
WEI Lai, ZENG Jing, GAO Hao, QU Sheng, SUN Yi. Wheel Out-of-Roundness Identification Approach Based on Axlebox High-Frequency Vibrations[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 211-219. doi: 10.3969/j.issn.0258-2724.20211085
Citation: WEI Lai, ZENG Jing, GAO Hao, QU Sheng, SUN Yi. Wheel Out-of-Roundness Identification Approach Based on Axlebox High-Frequency Vibrations[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 211-219. doi: 10.3969/j.issn.0258-2724.20211085

Wheel Out-of-Roundness Identification Approach Based on Axlebox High-Frequency Vibrations

doi: 10.3969/j.issn.0258-2724.20211085
  • Received Date: 29 Dec 2021
  • Rev Recd Date: 26 Apr 2022
  • Available Online: 13 Jan 2023
  • Publish Date: 07 May 2022
  • In order to realise the real-time detection of wheel out-of-roundness (OOR) for high-speed trains, the spectral characteristics and mapping relationship between the axlebox high-frequency vibration and the wheel OOR are studied. The amplitude and order of the wheel OOR are identified using the frequency-domain integration method. Firstly, manifestations of the wheel polygonisation, rail corrugation and track modes of China high-speed railways are investigated through static measurements and laboratory experiments. Secondly, the time-frequency characteristics and evolution principle of the bogie axlebox vibrations are obtained through the long-term operation performance tracking test of a high-speed train. Finally, taking the 20th order wheel polygonisation as the research object, an identification approach of the wheel OOR order and amplitude is proposed based on the frequency-domain integration method. The results show that the third-order bending modal frequency of the China railway track system Ⅱ (CRTS-Ⅱ) track slab is 592 Hz. When the train is running at a speed of 300 km/h, the response frequencies due to the 20th-order wheel polygonisation and the rail corrugation with a wavelength of 136 mm are 580 and 613 Hz, respectively. The dominant frequencies of rail mode, wheel polygonisation and rail corrugation are relatively concentrated. The amplitude of high-frequency vibration of axlebox increases with the increase of vehicle speed and mileage after re-profiling. Theoretically, the amplitude and order of the wheel OOR can be identified by the integration of accelerations in the frequency domain. The relative error between the identified 20th-order wheel OOR results based on the field-tested axlebox acceleration and the static measured values is less than 5%.

     

  • [1]
    TAO G Q, WEN Z F, JIN X S, et al. Polygonisation of railway wheels: a critical review[J]. Railway Engineering Science, 2020, 28(4): 317-345. doi: 10.1007/s40534-020-00222-x
    [2]
    金学松,吴越,梁树林,等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报,2020,56(16): 118-136. doi: 10.3901/JME.2020.16.118

    JIN Xuesong, WU Yue, LIANG Shulin, et al. Characteristics, mechanism, influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136. doi: 10.3901/JME.2020.16.118
    [3]
    DAI H Y, LI D, WANG J, et al. Study on the mechanism of high order out of round roughness of high speed railway train’s wheel[C]//Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel System. Delft: CRC, 2018: 189-195.
    [4]
    WU X W, RAKHEJA S, CAI W B, et al. A study of formation of high order wheel polygonalization[J]. Wear, 2019, 424/425: 1-14. doi: 10.1016/j.wear.2019.01.099
    [5]
    姜子清,司道林,李伟,等. 高速铁路钢轨波磨研究[J]. 中国铁道科学,2014,35(4): 9-14. doi: 10.3969/j.issn.1001-4632.2014.04.02

    JIANG Ziqing, SI Daolin, LI Wei, et al. On rail corrugation of high speed railway[J]. China Railway Science, 2014, 35(4): 9-14. doi: 10.3969/j.issn.1001-4632.2014.04.02
    [6]
    谷永磊,赵国堂,王衡禹,等. 轨道振动特性对高速铁路钢轨波磨的影响[J]. 中国铁道科学,2016,37(4): 42-47. doi: 10.3969/j.issn.1001-4632.2016.04.07

    GU Yonglei, ZHAO Guotang, WANG Hengyu, et al. Effect of track vibration characteristics on rail corrugation of high speed railway[J]. China Railway Science, 2016, 37(4): 42-47. doi: 10.3969/j.issn.1001-4632.2016.04.07
    [7]
    GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
    [8]
    LIU X Y, ZHAI W M. Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains[J]. Wear, 2014, 314(1/2): 282-290.
    [9]
    CHEN M, SUN Y, GUO Y, et al. Study on effect of wheel polygonal wear on high-speed vehicle-track-subgrade vertical interactions[J]. Wear, 2019, 432/433: 102914.1-102914.9. doi: 10.1016/j.wear.2019.05.029
    [10]
    WU X W, CHI M R, WU P B. Influence of polygonal wear of railway wheels on the wheel set axle stress[J]. Vehicle System Dynamics, 2015, 53(11): 1535-1554. doi: 10.1080/00423114.2015.1063674
    [11]
    QU S, ZHU B, ZENG J, et al. Experimental investigation for wheel polygonisation of high-speed trains[J]. Vehicle System Dynamics, 2021, 59(10): 1573-1586. doi: 10.1080/00423114.2020.1772984
    [12]
    ZHANG J, HAN G X, XIAO X B, et al. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University–Science A (Applied Physics & Engineering), 2014: 1002-1018.
    [13]
    王远,佟岩. 高速动车组车轮多边形对车内噪声的影响[J]. 噪声与振动控制,2018,38(1): 147-150. doi: 10.3969/j.issn.1006-1355.2018.01.029

    WANG Yuan, TONG Yan. Influence of polygonal wheels on interior noise of high-speed trains[J]. Noise and Vibration Control, 2018, 38(1): 147-150. doi: 10.3969/j.issn.1006-1355.2018.01.029
    [14]
    徐磊,陈宪麦,徐伟昌,等. 基于小波和Wigner-Ville分布的轨道不平顺特征识别[J]. 中南大学学报(自然科学版),2013,44(8): 3344-3350.

    XU Lei, CHEN Xianmai, XU Weichang, et al. Explored of track irregularity’s characteristic identification based on wavelet method and Wigner-Ville distribution[J]. Journal of Central South University (Science and Technology), 2013, 44(8): 3344-3350.
    [15]
    XIAO X, SUN Z, SHEN W A. A Kalman filter algorithm for identifying track irregularities of railway bridges using vehicle dynamic responses[J]. Mechanical Systems and Signal Processing, 2020, 138: 106582.1-106582.27. doi: 10.1016/j.ymssp.2019.106582
    [16]
    WESTEON P F, LING C S, ROBERTS C, et al. Monitoring vertical track irregularity from in-service railway vehicles[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 2007, 221(1): 75-88. doi: 10.1243/0954409JRRT65
    [17]
    MOLODOVA M, LI Z L, DOLLEVOET R. Axle box acceleration: measurement and simulation for detection of short track defects[J]. Wear, 2011, 271(1/2): 349-356.
  • Relative Articles

    [1]LIANG Xianming, NI Fan, CHEN Wenjie, ZHANG Jiashu. Interpretability of Modulation Recognition Network Based on Time-Frequency Gradient-Weighted Class Activation Mapping[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1215-1224. doi: 10.3969/j.issn.0258-2724.20210791
    [2]WANG Ming, LI Xingxing, LI Xiaozhen. Mechanism of High-Speed Train Crosswind Overturning Stability Based on Frequency Domain Analysis[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 315-322, 342. doi: 10.3969/j.issn.0258-2724.20210571
    [3]CUI Xiaolu, BAO Pengyu, CHEN Jiaxin, YANG Zongchao. Rail Friction Self-Excited Vibration in Braking Section of High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 141-149. doi: 10.3969/j.issn.0258-2724.20210173
    [4]WANG Peng, TAO Gongquan, YANG Xiaoxuan, XIE Chenxi, LI Wei, WEN Zefeng. Analysis of Polygonal Wear Characteristics of Chinese High-Speed Train Wheels[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1357-1365. doi: 10.3969/j.issn.0258-2724.20210777
    [5]HU Yanlin, LING Liang, WANG Kaiyun. An Analytical Method for Train Dynamic Behavior on Long Steep Grades of High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 277-285. doi: 10.3969/j.issn.0258-2724.20210097
    [6]LIU Yumei, CHEN Yun, ZHAO Congcong, XIONG Mingye. Vibration Evaluation and Reliability Analysis of High-Speed Train Transmission System Based on Kernel Density Estimator and Markov Model[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 783-790, 796. doi: 10.3969/j.issn.0258-2724.20200542
    [7]LI Xiaozhen, GAO Wei, LEI Kangning, HU Xuehui, LIANG Lin. Vibration and Noise Measurement of Railway Station Hall Induced by High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1067-1075. doi: 10.3969/j.issn.0258-2724.20190065
    [8]YANG Youtao, LIU Guoxiang. Analysis of Track Irregularity Time-Frequency Characteristics Based on Empirical Mode Decomposition[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 733-740. doi: 10.3969/j.issn.0258-2724.2018.04.010
    [9]TANG Zhao, ZHU Yunrui, NIE Yinyu, ZHANG Weihua. Holistic High-Speed Train Subsystem Simulation Platform Based on CAD/CAE Integration[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 113-120. doi: 10.3969/j.issn.0258-2724.2016.01.017
    [10]ZHANG Yadong, ZHANG Jiye, ZHANG Liang, LI Tian. Numerical Analysis of Aerodynamic Noise of Motor Car Bogie for High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 870-877. doi: 10.3969/j.issn.0258-2724.2016.05.008
    [11]SUN Yongkui, YU Zhibin, JIN Weidong. Recognizing Running State of High-Speed Trains Based on Multifractal Theory and SVM[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 7-12. doi: 10.3969/j.issn.0258-2724.2015.01.002
    [12]HUANG Guanhua, ZHANG Weihua, FU Yongpei, LIANG Shulin, WANG Xingyu. Stability Analysis of Parametric Vibration for Gear Transmission System in High-Speed Train[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1010-1015. doi: 10.3969/j.issn.0258-2724.2014.06.012
    [13]CUITao, ZHANG Weihua. Fluid-Solid Coupling Vibration of Train Passing through Platform at High Speed in Cross Wind[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 404-408. doi: 10.3969/j.issn.0258-2724.2011.03.008
    [14]RONG Haina, ZHANG Gexiang, JIN Weidong. Multi-component Emitter Signal Analysis Method Based on Reassigned S-method[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 195-200.
    [15]TANG Yi-ke, LIANG Feng. Application of Time-Frequency Analysis Method to Start-up Process Analysis of High-Pressure Hydraulic Pump[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 525-527.
    [16]LiXiaozhen, QiangShizhong. Coupling Vibration Analysis for Long Span Steel Cable- Stayed Bridge Crossing over Yangtze River at Nanjing on Beijing-Shanghai High-Speed Railway[J]. Journal of Southwest Jiaotong University, 1999, 12(2): 153-157.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-122025-012025-022025-032025-042025-052025-062025-072025-082025-092025-102025-11010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.2 %FULLTEXT: 26.2 %META: 65.1 %META: 65.1 %PDF: 8.6 %PDF: 8.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.1 %其他: 19.1 %其他: 0.1 %其他: 0.1 %Central District: 0.3 %Central District: 0.3 %上海: 1.1 %上海: 1.1 %临汾: 0.1 %临汾: 0.1 %九江: 0.1 %九江: 0.1 %保定: 0.2 %保定: 0.2 %兰州: 0.2 %兰州: 0.2 %内江: 0.1 %内江: 0.1 %北京: 17.8 %北京: 17.8 %十堰: 0.1 %十堰: 0.1 %南京: 1.4 %南京: 1.4 %南昌: 0.4 %南昌: 0.4 %南通: 0.3 %南通: 0.3 %合肥: 0.1 %合肥: 0.1 %吉隆坡: 0.1 %吉隆坡: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %大同: 0.3 %大同: 0.3 %大庆: 0.1 %大庆: 0.1 %大连: 0.2 %大连: 0.2 %天津: 1.1 %天津: 1.1 %太原: 0.1 %太原: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.2 %安康: 0.2 %宣城: 0.4 %宣城: 0.4 %山景城: 0.1 %山景城: 0.1 %常德: 0.2 %常德: 0.2 %平凉: 0.1 %平凉: 0.1 %张家口: 1.3 %张家口: 1.3 %徐州: 0.1 %徐州: 0.1 %成都: 1.6 %成都: 1.6 %扬州: 0.6 %扬州: 0.6 %新乡: 0.2 %新乡: 0.2 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %杭州: 0.6 %杭州: 0.6 %松原: 0.1 %松原: 0.1 %株洲: 0.2 %株洲: 0.2 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.2 %武汉: 0.2 %池州: 0.5 %池州: 0.5 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.2 %济南: 0.2 %淮安: 0.2 %淮安: 0.2 %深圳: 0.3 %深圳: 0.3 %温州: 0.4 %温州: 0.4 %湖州: 0.1 %湖州: 0.1 %漯河: 1.5 %漯河: 1.5 %潍坊: 0.2 %潍坊: 0.2 %烟台: 0.1 %烟台: 0.1 %盐城: 0.4 %盐城: 0.4 %石家庄: 2.8 %石家庄: 2.8 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 13.5 %芒廷维尤: 13.5 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.2 %苏州: 0.2 %蒙特利尔: 0.1 %蒙特利尔: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 22.4 %西宁: 22.4 %西安: 0.2 %西安: 0.2 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.7 %运城: 0.7 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.7 %郑州: 0.7 %重庆: 0.4 %重庆: 0.4 %锦州: 0.1 %锦州: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 1.7 %长沙: 1.7 %青岛: 0.9 %青岛: 0.9 %香港: 0.3 %香港: 0.3 %其他其他Central District上海临汾九江保定兰州内江北京十堰南京南昌南通合肥吉隆坡哈尔滨哥伦布嘉兴大同大庆大连天津太原宁波安康宣城山景城常德平凉张家口徐州成都扬州新乡无锡昆明杭州松原株洲格兰特县武汉池州沈阳济南淮安深圳温州湖州漯河潍坊烟台盐城石家庄福州秦皇岛芒廷维尤芝加哥苏州蒙特利尔衡水衡阳西宁西安西雅图诺沃克贵阳运城邯郸郑州重庆锦州长春长沙青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views(739) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return