Citation: | LIANG Xianming, NI Fan, CHEN Wenjie, ZHANG Jiashu. Interpretability of Modulation Recognition Network Based on Time-Frequency Gradient-Weighted Class Activation Mapping[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1215-1224. doi: 10.3969/j.issn.0258-2724.20210791 |
Aiming at the poor interpretability of modulation recognition methods based on time-frequency deep learning, an interpretable framework of a modulation recognition network is proposed, utilizing time-frequency gradient-weighted class activation mapping (Grad-CAM). Through the key features of the hidden layer in the Grad-CAM visual deep model, the significance of the deep features extracted from the network hidden layer are illustrated in terms of correct and error recognition, revealing the decline of network performance in the environment of low signal-to-noise ratio (SNR). The contribution values of different convolution cores at each network layer are quantified and sorted to determine the network redundancy. The simulation results verify the interpretable framework of the time-frequency deep learning network for modulation recognition. The interpretable analysis results reflect that there is a large amount of noise present in the feature extraction region of the network in a low signal-to-noise ratio environment, and the tested modulation recognition network exhibits a high degree of redundancy.
[1] |
WEI W, MENDEL J M. Maximum-likelihood classification for digital amplitude-phase modulations[J]. IEEE Transactions on Communications, 2000, 48(2): 189-193. doi: 10.1109/26.823550
|
[2] |
POLYDOROS A, KIM K. On the detection and classification of quadrature digital modulations in broad-band noise[J]. IEEE Transactions on Communications, 1990, 38(8): 1199-1211. doi: 10.1109/26.58753
|
[3] |
HUAN C Y, POLYDOROS A. Likelihood methods for MPSK modulation classification[J]. IEEE Transactions on Communications, 1995, 43(2/3/4): 1493-1504. doi: 10.1109/26.380199
|
[4] |
NANDI A K, AZZOUZ E E. Algorithms for automatic modulation recognition of communication signals[J]. IEEE Transactions on Communications, 1998, 46(4): 431-436. doi: 10.1109/26.664294
|
[5] |
ZAERIN M, SEYFE B. Multiuser modulation classification based on cumulants in additive white Gaussian noise channel[J]. IET Signal Processing, 2012, 6(9): 815-823. doi: 10.1049/iet-spr.2011.0357
|
[6] |
李红光,郭英,眭萍,等. 基于时频特征的卷积神经网络跳频调制识别[J]. 浙江大学学报(工学版),2020,54(10): 1945-1954.
LI Hongguang, GUO Ying, SUI Ping, et al. Frequency hopping modulation recognition of convolutional neural network based on time-frequency characteristics[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(10): 1945-1954.
|
[7] |
ZHANG H J, LE RUYET D, TERRÉ M. Spectral correlation of multicarrier modulated signals and its application for signal detection[J]. EURASIP Journal on Advances in Signal Processing, 2010, 2010: 794246.1-794246.14.
|
[8] |
SCHREYOGG C, KITTEL K, KRESSEL U, et al. Robust classification of modulation types using spectral features applied to HMM[C]//1997 IEEE Military Communications Conference (MILCOM 97). Monterey: IEEE, 1997: 1377-1381.
|
[9] |
MOBASSERI B G. Constellation shape as a robust signature for digital modulation recognition[C]//IEEE Military Communications Conference (MILCOM 99). Atlantic City: IEEE, 1999: 442-446.
|
[10] |
李楠. 双谱特征和深度学习在信号调制识别中的应用[J]. 弹箭与制导学报,2019,39(5): 81-84,88.
LI Nan. Application of bi-spectral feature and depth learning in signal modulation recognition[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(5): 81-84,88.
|
[11] |
O’SHEA T, HOYDIS J. An introduction to deep learning for the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 563-575. doi: 10.1109/TCCN.2017.2758370
|
[12] |
HU S S, PEI Y Y, LIANG P P, et al. Robust modulation classification under uncertain noise condition using recurrent neural network[C]//2018 IEEE Global Communications Conference (GLOBECOM). Abu Dhabi: IEEE, 2018: 8647582.1-8647582.7.
|
[13] |
吴亚聪. 基于深度注意胶囊的智能信号识别方法研究[D]. 西安: 西安电子科技大学,2019.
|
[14] |
ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 2921-2929.
|
[15] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 618-626.
|
[16] |
CHEN J Y, MIAO S H, ZHENG H B, et al. Feature explainable deep classification for signal modulation recognition[C]//The 46th Annual Conference of the IEEE Industrial Electronics Society (IECON 2020). Singapore: IEEE, 2020: 3543-3548.
|