Processing math: 100%
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
GUO Ruijian, CHEN Xuejun, DUAN Jian, TANG Lingming, ZHANG Xiaochen. Analysis on Precipitation-Induced Subsidence of Covered Karst Soil Caves Regarding Spatial Shape[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 453-461. doi: 10.3969/j.issn.0258-2724.20210494
Citation: GUO Ruijian, CHEN Xuejun, DUAN Jian, TANG Lingming, ZHANG Xiaochen. Analysis on Precipitation-Induced Subsidence of Covered Karst Soil Caves Regarding Spatial Shape[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 453-461. doi: 10.3969/j.issn.0258-2724.20210494

Analysis on Precipitation-Induced Subsidence of Covered Karst Soil Caves Regarding Spatial Shape

doi: 10.3969/j.issn.0258-2724.20210494
  • Received Date: 22 Jun 2021
  • Rev Recd Date: 18 Jun 2022
  • Available Online: 21 Feb 2023
  • Publish Date: 13 Jul 2022
  • In order to reveal the precipitation mechanism of covered Karst caves, the influence of the shape and size of the cave body and the internal law under the limit equilibrium, a common ellipsoid soil cave in straight collapse is investigated and its mechanical model of precipitation-induced subsidence is constructed. The calculation formula of the cavity negative pressure for the soil cave is deduced according to Boyle-Maliot law, so as to obtain the expression of the stability coefficient for the soil cavecollapse, and the feasibility of the calculation formula is verified by comparison. Further, the internal relations among the physical and mechanical parameters of soil mass, precipitation parameters, the spatial shape and size of soil hole and the overburden soil thickness under the limit equilibrium are obtained. Utilizing a calculation example, the influence of groundwater precipitation parameters and the shape and size parameters of the soil cave, and the internal law analysis under the limit equilibrium state are carried out. It is pointed out that when the initial water level is higher than the cave top, the stability coefficient of soil cave collapse and groundwater drawdown show a “Z”-shaped change, and it is very easy to cause soil cave collapse the moment the falling stable water level falls over the vault. When the initial water level is in the cave body, they show a negative correlation with changes steep in the front and slow in the back, and the higher the initial water level in the cave, the greater the decline; when the initial water level is lower than the cave bottom, the effect of drawdown is very small. The influence of the ratio of the long and short half axes of the ellipsoid on the stability coefficient conforms to the pattern of the increasing function. The greater the eccentricity of the cross section, the more stable it is, while the circular sphere is the most unfavorable. There is a linear relationship between the arch height and the stability coefficient. The arching effect is significant when the arch height increases, and the soil hole is more stable. Under the limit equilibrium, when the initial water level is fixed, the drawdown is positively correlated with the thickness of the overburden layer, showing a trend of slow change before and steep change after; however, when the thickness of the overburden layer is fixed, the drawdown is negatively correlated with the initial water level. The greater the horizontal section eccentricity of the soil cave or the higher the arch height, the deeper the groundwater required to reach the limit equilibrium, which is characterized by the changes gentle front and steep back.

     

  • [1]
    CAHALAN M D, MILEWSKI A M. Sinkhole formation mechanisms and geostatistical-based prediction analysis in a mantled Karst terrain[J]. Catena, 2018, 165: 333-344. doi: 10.1016/j.catena.2018.02.010
    [2]
    王滨,贺可强,高宗军. 岩溶塌陷发育的时空阶段性分析[J]. 水文地质工程地质,2001,28(5): 24-27. doi: 10.3969/j.issn.1000-3665.2001.05.006
    [3]
    苏添金,洪儒宝,简文彬. 覆盖型岩溶土洞致灾过程的数值模拟与预测[J]. 自然灾害学报,2018,27(5): 179-187. doi: 10.13577/j.jnd.2018.0520

    SU Tianjin, HONG Rubao, JIAN Wenbin. Numerical simulation and prediction of covered Karst collapse[J]. Journal of Natural Disasters, 2018, 27(5): 179-187. doi: 10.13577/j.jnd.2018.0520
    [4]
    万志清,秦四清,李志刚,等. 土洞形成的机理及起始条件[J]. 岩石力学与工程学报,2003,22(8): 1377-1382. doi: 10.3321/j.issn:1000-6915.2003.08.028

    WAN Zhiqing, QIN Siqing, LI Zhigang, et al. Formation mechanism and initial condition of soil cavity[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(8): 1377-1382. doi: 10.3321/j.issn:1000-6915.2003.08.028
    [5]
    姜伏伟. 粘性土渗透破坏临界条件推导及试验探讨[J]. 地下空间与工程学报,2017,13(6): 1472-1476,1498.

    JIANG Fuwei. Discussion on formula derivation and test of critical hydraulic condition of cohesive soil[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(6): 1472-1476,1498.
    [6]
    CHANG D S, ZHANG L M. Critical hydraulic gradients of internal erosion under complex stress states[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1454-1467. doi: 10.1061/(ASCE)GT.1943-5606.0000871
    [7]
    JIA L, LI L J, MENG Y, et al. Responses of cover-collapse sinkholes to groundwater changes: a case study of early warning of soil cave and sinkhole activity on Datansha Island in Guangzhou, China[J]. Environmental Earth Sciences, 2018, 77(13): 1-11.
    [8]
    NAM B H, KIM Y J, YOUN H. Identification and quantitative analysis of sinkhole contributing factors in Florida’s karst[J]. Engineering Geology, 2020, 271: 105610.1-105610.14. doi: 10.1016/j.enggeo.2020.105610
    [9]
    李涛,张子真,宗露丹. 地下空洞引起土质地层地陷的形成机制与预测研究[J]. 岩土力学,2015,36(7): 1995-2002. doi: 10.16285/j.rsm.2015.07.022

    LI Tao, ZHANG Zizhen, ZONG Ludan. Study of formation mechanism and prediction of sinkholes in soil stratum induced by subterranean cavity[J]. Rock and Soil Mechanics, 2015, 36(7): 1995-2002. doi: 10.16285/j.rsm.2015.07.022
    [10]
    LIU Z, ZHOU C Y, DU Z C, et al. Modeling cover-collapse sinkhole based on the theory of shells[J]. International Journal of Computational Materials Science and Engineering, 2019, 8(1): 1850028.1-1850028.17. doi: 10.1142/S2047684118500288
    [11]
    王滨,贺可强. 岩溶塌陷临界土洞的极限平衡高度公式[J]. 岩土力学,2006,27(3): 458-462. doi: 10.3969/j.issn.1000-7598.2006.03.024

    WANG Bin, HE Keqiang. Study on limit equilibrium height expression of critical soil cave of karst collapse[J]. Rock and Soil Mechanics, 2006, 27(3): 458-462. doi: 10.3969/j.issn.1000-7598.2006.03.024
    [12]
    苏永华,周乾,蹇宜霖. 孕育型土洞地陷判据研究[J]. 湖南大学学报(自然科学版),2020,47(5): 39-47. doi: 10.16339/j.cnki.hdxbzkb.2020.05.005

    SU Yonghua, ZHOU Qian, JIAN Yilin. Study on the criterion of land subsidence for gestation type soil cave[J]. Journal of Hunan University (Natural Sciences), 2020, 47(5): 39-47. doi: 10.16339/j.cnki.hdxbzkb.2020.05.005
    [13]
    苏永华,廖君橙,黄腾. 城区地表塌陷土洞发育破坏特征[J]. 湖南大学学报(自然科学版),2021,48(11): 177-184. doi: 10.16339/j.cnki.hdxbzkb.2021.11.018

    SU Yonghua, LIAO Juncheng, HUANG Teng. Study on development and failure characteristics of soil caves in urban surface subsidence[J]. Journal of Hunan University (Natural Sciences), 2021, 48(11): 177-184. doi: 10.16339/j.cnki.hdxbzkb.2021.11.018
    [14]
    肖先煊. 覆盖型岩溶区水气相互驱动盖层变形演化及塌陷机理研究[D]. 成都: 成都理工大学, 2018.
    [15]
    XIAO X X, XU M, DING Q Z, et al. Experimental study investigating deformation behavior in land overlying a Karst cave caused by groundwater level changes[J]. Environmental Earth Sciences, 2018, 77(3): 641-6411.
    [16]
    XIAO X X, GUTIÉRREZ F, GUERRERO J. The impact of groundwater drawdown and vacuum pressure on sinkhole development. Physical laboratory models[J]. Engineering Geology, 2020, 279: 105894.1-105894.10.
    [17]
    魏锋,陈忠达,陈峙峰,等. 路堤下伏溶洞受力模式和变形破坏的数值模拟[J]. 中国公路学报,2018,31(6): 195-206. doi: 10.3969/j.issn.1001-7372.2018.06.006

    WEI Feng, CHEN Zhongda, CHEN Zhifeng, et al. Numerical simulation of the mechanical characteristic and failure mode of Karst subgrade[J]. China Journal of Highway and Transport, 2018, 31(6): 195-206. doi: 10.3969/j.issn.1001-7372.2018.06.006
    [18]
    SHIAU J, KEAWSAWASVONG S, CHUDAL B, et al. Sinkhole stability in elliptical cavity under collapse and blowout conditions[J]. Geosciences, 2021, 11(10): 421.1-421.15.
    [19]
    王启智. 球形空洞地基稳定性分析[J]. 四川建筑科学研究,2005,31(4): 74-75,94. doi: 10.3969/j.issn.1008-1933.2005.04.026

    WANG Qizhi. Stability analysis for a spherical cave in soil foundation[J]. Building Science Research of Sichuan, 2005, 31(4): 74-75,94. doi: 10.3969/j.issn.1008-1933.2005.04.026
    [20]
    廖丽萍,杨万科,王启智. 椭球形空洞地基稳定性分析[J]. 岩土力学,2010,31(增2): 138-148. doi: 10.16285/j.rsm.2010.s2.062

    LIAO Liping, YANG Wanke, WANG Qizhi. Stability analysis of an ellipsoidal cavity in foundation[J]. Rock and Soil Mechanics, 2010, 31(S2): 138-148. doi: 10.16285/j.rsm.2010.s2.062
    [21]
    李倩倩,张顶立,房倩. 含空洞地层初始破坏的复变函数解析研究[J]. 岩土工程学报,2014,36(11): 2110-2117. doi: 10.11779/CJGE201411018

    LI Qianqian, ZHANG Dingli, FANG Qian. Analytic solution to initial damage of cavern strata by complex function method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2110-2117. doi: 10.11779/CJGE201411018
    [22]
    赵衡,肖尧,赵明华,等. 路基下伏矩形溶洞的稳定性解析法[J]. 中国公路学报,2018,31(2): 165-170,180. doi: 10.3969/j.issn.1001-7372.2018.02.017

    ZHAO Heng, XIAO Yao, ZHAO Minghua, et al. Stability assessment method for subgrade with underlying rectangular cavity[J]. China Journal of Highway and Transport, 2018, 31(2): 165-170,180. doi: 10.3969/j.issn.1001-7372.2018.02.017
    [23]
    刘秀敏,陈从新,于群群,等. 黏土颗粒含量对土洞稳定性影响试验研究[J]. 岩石力学与工程学报,2021,40(9): 1914-1922. doi: 10.13722/j.cnki.jrme.2021.0176

    LIU Xiumin, CHEN Congxin, YU Qunqun, et al. Experimental study on the influence of clay particle contents on the stability of soil caves[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(9): 1914-1922. doi: 10.13722/j.cnki.jrme.2021.0176
    [24]
    程守洙, 江之永. 普通物理学 • 上册[M]. 7版. 北京: 高等教育出版社, 2016.
  • Relative Articles

    [1]TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388
    [2]XU Kunpeng, JING Liping, BIN Jia, CHENG Xinjun, LIANG Haian. Experimental Study on Coefficient Value of Subgrade Reaction in Seismic Analysis of Underground Structures[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1035-1042. doi: 10.3969/j.issn.0258-2724.20191073
    [3]ZHANG Kai, HUO Xiaolong, CHEN Shougen, TU Peng, TAN Xinrong. Preliminary Study of Assessment System for Subsurface Karst Development Degree[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 565-573. doi: 10.3969/j.issn.0258-2724.2018.03.018
    [4]SONG Kai, LIU Dan, LIU Jian. Multiple Model Analysis for Studying Groundwater Uncertainties[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 574-581. doi: 10.3969/j.issn.0258-2724.2018.03.019
    [5]LI Xiaozhen, XIAO Jun, LIU Dejun, LIU Chenguang, ZHANG Jingfeng, XIAO Lin. Influence of Local Stress Variance on Elastic Stability of Compression Bar[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 971-976. doi: 10.3969/j.issn.0258-2724.2015.06.001
    [6]XIA Min, REN Guangming, MA Xinlei, DONG Qingzhi, HUANG Bangzhi, SUN Renxian. Dynamic Responses of Groundwater Seepage of Landslide Influenced by Fluctuation of Reservoir Water Level[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 399-405. doi: 10.3969/j.issn.0258-2724.2014.03.005
    [7]YANG Tao, MA Hui-Min, DAI Jie. Application Condition of Point Safety Factor Method for Stability Analysis of Landslide[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 966-972. doi: 10.3969/j.issn.0258-2724.2011.06.013
    [8]LIU Dun-Xin, CHEN Zhong-Fu, XU Wei-Fang. SHPB Experiment of Dynamic Mechanical Behaviorof Compacted Clay[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 960-965. doi: 10.3969/j.issn.0258-2724.2011.06.012
    [9]OUYANG Feng, LI Gang, FU Yong-sheng. A New Kind of Minus-Pressure Air Flotation Equipment[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 209-211.
    [10]LIU Dan, LI Qi-bin. Groundwater Age Determined with Environmental Tritium in Qinling Tunnel Area[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 601-605.
    [11]WANGJian-xiu, YANGLi-zhong, HEJing. The Coupling Interaction of Groundwater-Soil-Rock Mass in Karst Collapse Evolution[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 314-317.
    [12]ZHOUJia-mei, YAN Song-hong, WANG Ying-xue. Analysis of Partial Coefficients of Single-Track Railway Tunnel Portal Structures[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 505-508.
    [13]YANG Ming-ju, GUAN Bao-shu, WANG Min-shou. Sensitivity Analysis of the Influences of Rock Parameters on the Stability of Large-Scale Underground Chambers[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 488-491.
    [14]YANGMing-ju, CHANG Shao-dong. The Excavation Procedure of Super-Large Underground Chambers and the Surrounding Rock Stability[J]. Journal of Southwest Jiaotong University, 2000, 13(1): 32-35.
    [15]Huang Tao, Yang Lizhong, Chen Yili. A Mathematical Model for the Coupling among Groundwater Seepage-Stress-Temperature in Engineering Rock Mass[J]. Journal of Southwest Jiaotong University, 1999, 12(1): 12-15.
  • Cited by

    Periodical cited type(2)

    1. 陈学军,薛明明,宋宇. 水位下降速率对岩溶土洞塌陷的影响分析. 中国岩溶. 2024(04): 922-936 .
    2. 苏永华,杨忠武,刘阳阳,罗彪,郭思源. 岩溶区地下双空洞诱发地面塌陷演化过程的试验研究. 安全与环境学报. 2024(11): 4194-4205 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.3 %FULLTEXT: 25.3 %META: 68.1 %META: 68.1 %PDF: 6.6 %PDF: 6.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.2 %其他: 9.2 %其他: 0.3 %其他: 0.3 %Malang: 0.2 %Malang: 0.2 %Seattle: 0.3 %Seattle: 0.3 %[]: 0.2 %[]: 0.2 %上海: 0.2 %上海: 0.2 %临汾: 0.5 %临汾: 0.5 %六盘水: 0.3 %六盘水: 0.3 %兰州: 0.8 %兰州: 0.8 %北京: 11.5 %北京: 11.5 %十堰: 0.3 %十堰: 0.3 %南京: 1.4 %南京: 1.4 %南昌: 0.2 %南昌: 0.2 %南通: 0.2 %南通: 0.2 %哥伦布: 0.5 %哥伦布: 0.5 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.5 %天津: 0.5 %安康: 0.2 %安康: 0.2 %宣城: 0.2 %宣城: 0.2 %布加勒斯特: 0.2 %布加勒斯特: 0.2 %广州: 0.2 %广州: 0.2 %延安: 0.2 %延安: 0.2 %张家口: 3.9 %张家口: 3.9 %成都: 2.2 %成都: 2.2 %扬州: 0.5 %扬州: 0.5 %揭阳: 0.2 %揭阳: 0.2 %杭州: 0.2 %杭州: 0.2 %株洲: 0.7 %株洲: 0.7 %武汉: 0.5 %武汉: 0.5 %池州: 0.7 %池州: 0.7 %沈阳: 0.3 %沈阳: 0.3 %洛杉矶: 0.2 %洛杉矶: 0.2 %深圳: 0.3 %深圳: 0.3 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.2 %湘潭: 0.2 %漯河: 1.0 %漯河: 1.0 %烟台: 0.2 %烟台: 0.2 %石家庄: 2.0 %石家庄: 2.0 %秦皇岛: 0.2 %秦皇岛: 0.2 %绵阳: 0.2 %绵阳: 0.2 %自贡: 0.2 %自贡: 0.2 %芒廷维尤: 14.6 %芒廷维尤: 14.6 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.2 %苏州: 0.2 %西宁: 38.0 %西宁: 38.0 %西安: 0.3 %西安: 0.3 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.8 %贵阳: 0.8 %运城: 1.4 %运城: 1.4 %郑州: 0.2 %郑州: 0.2 %重庆: 1.0 %重庆: 1.0 %长春: 0.2 %长春: 0.2 %长沙: 1.0 %长沙: 1.0 %黄山: 0.2 %黄山: 0.2 %其他其他MalangSeattle[]上海临汾六盘水兰州北京十堰南京南昌南通哥伦布嘉兴天津安康宣城布加勒斯特广州延安张家口成都扬州揭阳杭州株洲武汉池州沈阳洛杉矶深圳湖州湘潭漯河烟台石家庄秦皇岛绵阳自贡芒廷维尤芝加哥苏州西宁西安诺沃克贵阳运城郑州重庆长春长沙黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views(400) PDF downloads(39) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return