• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
SONG Kai, LIU Dan, LIU Jian. Multiple Model Analysis for Studying Groundwater Uncertainties[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 574-581. doi: 10.3969/j.issn.0258-2724.2018.03.019
Citation: SONG Kai, LIU Dan, LIU Jian. Multiple Model Analysis for Studying Groundwater Uncertainties[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 574-581. doi: 10.3969/j.issn.0258-2724.2018.03.019

Multiple Model Analysis for Studying Groundwater Uncertainties

doi: 10.3969/j.issn.0258-2724.2018.03.019
  • Received Date: 29 Aug 2016
  • Publish Date: 25 Jun 2018
  • Multiple Model Analysis was applied to study the groundwater modelling uncertainties caused by the deviation of model structure and heterogeneity in aquifer media. According to different natural conditions, two hydrogeological conceptual models were established. Using a large number of model parameter data, obtained through hydrogeological tests, as a priori information and based on the two conceptual models, a series of seepage field models was constructed using the Adaptive Metropolis-Markov Chain Monte Carlo method that acceptance condition was adjusted. Uncertainties of modelling output data are analysed based on corrected Akaike's Information Criteron. Research indicates that the ergodicity and convergence of sample parameters will not be affected by changes in acceptance conditions. The model output data include the following effects:"same results with different parameters" and "same results with different models". Although these effects exist, the model structure is closer to the objective of improving the probability of obtaining a high precision model. The proportion of the primary conceptual model, with a variance between 1 and 2, is 65%. When the model with Delta values greater than 10 is excluded, the top 10 models are retained and the cumulative a posterior probability is 0.996. The proportion of the second conceptual model, with a variance between 1 and 2, is 46%. When the model with Delta values greater than 10 is excluded, the top 21 models are retained. The cumulative posterior probability of the top 10 models is only 0.884.

     

  • loading
  • 吴吉春, 陆乐.地下水模拟不确定性分析[J].南京大学学报:自然科学, 2011, 47(3):227-234. http://d.old.wanfangdata.com.cn/Thesis/Y1859981

    WU Jichun, LU Le. Uncertainty analysis for groundwater modeling[J]. Journal of Nanjing University:Natural Sciences, 2011, 47(3):227-234. http://d.old.wanfangdata.com.cn/Thesis/Y1859981
    陆乐, 吴吉春, 陈景雅.基于贝叶斯方法的水文地质参数识别[J].水文地质工程地质, 2008(5):58-63. doi: 10.3969/j.issn.1000-3665.2008.05.014

    LU Le, WU Jichun, CHEN Jingya. Identification of hydrogeological parameters based on the Bayesian method[J]. Hydrogeology and Engineering Geology, 2008(5):58-63. doi: 10.3969/j.issn.1000-3665.2008.05.014
    BEVEN K, BINLEY A. The future of distributed models-model calibration and uncertainty prediction[J]. Hydrological Processes, 1992, 6(3):279-98. doi: 10.1002/(ISSN)1099-1085
    BEVEN K, FREER J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology[J]. Journal of Hydrology, 2001, 249(1):11-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=990d8ae736d1912750863bbda2673049
    HASSAN A E, BEKHIT H M, CHAPMAN J B. Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model[J]. Environmental Moddelling & Software, 2009, 24(6):749-63. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a3ba178c48b0d63b420a771a6e1d6fd2
    ROJAS R, KAHUNDE S, PETERS L, et al. Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling[J]. Journal of Hydrology, 2010, 394(3):416-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7b3427f235876bd3c2cda5424e4a8601
    BLASONE R S, VRUGT J A, MADSEN H, et al. Generalized likelihood uncertainty estimation(GLUE) using adaptive Markov Chain Monte Carlo sampling[J]. Advances in Water Resources, 2008, 31(4):630-48. doi: 10.1016/j.advwatres.2007.12.003
    KUCZERA G, PARENT E. Monte Carlo assessment of parameter uncertainty in conceptual catchment models:the metropolis algorithm[J]. Journal of Hydrology, 1998, 211(1):69-85. doi: 10.1016-S0022-1694(98)00198-X/
    ROJAS R, FEYEN L, BATCLAAN O, et al. On the value of conditioning data to reduce conceptual model uncertainty in groundwater modeling[J]. Water Resources Research, 2010, 46:W08520-1-W08520-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1552687227b55f831858d44c13751d7
    刑贞相, 芮孝芳, 崔海燕, 等.基于AM-MCMC算法的贝叶斯概率洪水预报模型[J].水利学报, 2007, 38(12):1500-1506. doi: 10.3321/j.issn:0559-9350.2007.12.014

    XING Zhenxiang, RUI Xiaofang, CUI Haiyan, et al. Bayesian probabilistic flood forecasting model based on adaptive metropolis-MCMC algorithm[J]. Journal of Hydraulic Engineering, 2007, 38(12):1500-1506. doi: 10.3321/j.issn:0559-9350.2007.12.014
    ROJAS R, FEYEN L, DASSARGUES A. Conceptual model uncertainty in groundwater modeling:Combining generalized likelihood uncertainty estimation and Bayesian model averaging[J]. Water Resources Research, 2008, 44:12418. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027477747/
    NEUMAN S P. Maximum likelihood Bayesian averaging of uncertain model predictions[J]. Stochastic Environmental Research and Risk Assessment, 2003, 17(5):291-305. doi: 10.1007/s00477-003-0151-7
    YE M, NEUMAN S P, MEYER P D. Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff[J]. Water Resources Research, 2004, 40:W05113-1-W05113-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4eb4da517a2a77101e0cbc15f40c48de
    曾献奎, 王栋, 吴吉春.地下水流概念模型的不确定性分析[J].南京大学学报:自然科学, 2012, 48(6):746-752. http://d.old.wanfangdata.com.cn/Periodical/njdxxb201206008

    ZENG Xiankui, WANG Dong, WU Jichun. Uncertainty analysis of groundwater flow conceptual model[J]. Journal of Nanjing University:Natural Sciences, 2012, 48(6):746-753. http://d.old.wanfangdata.com.cn/Periodical/njdxxb201206008
    NEUMAN S P. Maximum likelihood Bayesian averaging of alternative conceptual mathematical models[J]. Stochastic Environmental Research and Risk Assessment, 2003, 17(5):291-305. doi: 10.1007/s00477-003-0151-7
    REFSGAARD J C, SLUIJS J P V D, BROWN J, et al. A framework for dealing with uncertainty due to model structure error[J]. Advances in Water Resources, 2006, 29:1586-1597. doi: 10.1016/j.advwatres.2005.11.013
    GILKS W R, RICHARDSON S, SPIEGELHALTER D J. Markov chain monte carlo in practice[M]. London:Chapman & Hall, 1996:112-119.
    HAARIO H, SAKSMAN E, TAMMINEN J. An adaptive metropolis algorithm[J]. Bernoulli, 2001, 7(2):223-242. doi: 10.2307/3318737
    HAARIO H, SAKSMAN E, TANMIINEN J. Componentwise adaptation for high dimensional MCMC[J]. Computational Statistics, 2005, 20(2):265-273. doi: 10.1007/BF02789703
    GEHNAN A, CARLIN J B, STREN H.S, et al. Bayesian data analysis[M]. London:Chapmann and Hall, 1995:142-151.
    BURNHAM K P, ANDERSON D R. Model selection and multi-model inference:a practical information-theoretic approach[M]. New York:Springer-Verlag, 2002:163-177.
    POETER E P, ANDERSON D. Multi-model ranking and inference in groundwater modeling[J]. Ground Water, 2005, 43(4):597-605. doi: 10.1111/gwat.2005.43.issue-4
    夏强.地下水不确定性问题的多模型分析方法及应用[D].北京: 中国地质大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-11415-1011077537.htm
    四川省地质局.成都幅水文地质报告[R].成都: 四川省地质局, 1977.
    四川省地质局.都江堰幅水文地质报告[R].成都: 四川省地质局, 1977.
    四川省地质矿产局.成都平原水文地质工程地质综合勘察评价报告[R].成都: 四川省地质矿产局, 1985.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(458) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return