• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
WANG Min, HE Zhaoyi, ZHOU Wen, LIANG Xin. Influencing Factors of Asphalt Pavement Visibility on Rainy Days[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1286-1293. doi: 10.3969/j.issn.0258-2724.20211079
Citation: WANG Min, HE Zhaoyi, ZHOU Wen, LIANG Xin. Influencing Factors of Asphalt Pavement Visibility on Rainy Days[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1286-1293. doi: 10.3969/j.issn.0258-2724.20211079

Influencing Factors of Asphalt Pavement Visibility on Rainy Days

doi: 10.3969/j.issn.0258-2724.20211079
  • Received Date: 21 Dec 2021
  • Rev Recd Date: 27 Apr 2022
  • Available Online: 06 Sep 2023
  • Publish Date: 23 May 2022
  • Under the condition of rainfall, the water spray splashed by the tires of vehicles during driving can easily form water mist, and the visibility in front will be significantly reduced. The subjective recognition distance of the human body will be rapidly reduced, and even the wrong judgment of driving distance will lead to traffic accidents. Therefore, it is of great significance to study the influencing factors of asphalt pavement visibility on rainy days. Based on Mie’s theory, the meteorological definition of visibility was utilized, and Monte Carlo numerical simulation was performed with MATLAB software. In addition, a visibility calculation model is put forward characterized by vehicle speed, water film thickness, and pavement design parameters and then analyzed the influencing factors of visibility. The results show that on rainy days, when the water film thickness of asphalt pavement is less than 5.873 mm, the visibility caused by water mist will decrease with the increase in vehicle speed and water film thickness; among the pavement design parameters, the length of drainage path and the depth of pavement structure are positively correlated with visibility, and there is a negative correlation between road slope and visibility. It is found that the visibility reaches the minimum when the water film thickness is 5.873 mm; an improved calculation model of asphalt pavement visibility characterized by rainfall intensity, depth of pavement structure, pavement slope, length of drainage path, and vehicle speed is proposed.

     

  • loading
  • [1]
    孙悦. 海绵型道路关键几何设计参数优化及雨天行车安全研究[D]. 南京: 东南大学, 2019.
    [2]
    曹雪娟. 雾环境下山区高速公路驾驶员动态视认特性研究[D]. 重庆: 重庆交通大学, 2015.
    [3]
    KONSTANTOPOULOS P, CHAPMAN P, CRUNDALL D. Driver’ s visual attention as a function of driving experience and visibility. Using a driving simulator to explore drivers’ eye movements in day, night and rain driving[J]. Accident Analysis and Prevention, 2010, 42(3): 827-834. doi: 10.1016/j.aap.2009.09.022
    [4]
    PENG Y H, ABDEL-ATY M, SHI Q, et al. Assessing the impact of reduced visibility on traffic crash risk using microscopic data and surrogate safety measures[J]. Transportation Research Part C: Emerging Technologies, 2017, 74: 295-305. doi: 10.1016/j.trc.2016.11.022
    [5]
    刘春媛. 基于激光大气透射仪的能见度测量误差研究[D]. 天津: 中国民航大学, 2016.
    [6]
    高国强. 雨雾天环境中对激光传输衰减的研究[D]. 西安: 西安科技大学, 2014.
    [7]
    YU B, SUN Y. Simulation of impact of water-film spray on visibility[J]. Journal of Transportation Engineering Part B: Pavements, 2018, 144(4): 04018054.1-04018054.7.
    [8]
    张义. 低能见度下山区高速公路行车安全影响及保障技术研究[D]. 重庆: 重庆交通大学, 2017.
    [9]
    戢晓峰,张琪,覃文文,等. 恶劣天气对高原山区高速公路交通流特征的影响分析[J]. 交通信息与安全,2020,38(4): 10-16.

    JI Xiaofeng, ZHANG Qi, QIN Wenwen, et al. An impact analysis of bad weather on traffic flow characteristics of plateau mountain expressway[J]. Journal of Transport Information and Safety, 2020, 38(4): 10-16.
    [10]
    范新南,冶舒悦,史朋飞,等. 改进大气散射模型实现的图像去雾算法[J]. 计算机辅助设计与图形学学报,2019,31(7): 1148-1155.

    FAN Xinnan, YE Shuyue, SHI Pengfei, et al. An image dehazing algorithm based on improved atmospheric scattering model[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(7): 1148-1155.
    [11]
    冯文燕,张存保,曹雨,等. 雾天区域高速公路网交通运行状态建模与分析[J]. 武汉理工大学学报(交通科学与工程版),2021,45(1): 93-98.

    FENG Wenyan, ZHANG Cunbao, CAO Yu, et al. Modeling and analysis of traffic state of regional freeway network in fog region[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(1): 93-98.
    [12]
    HUANG Y, YAN X D, LI X M. Using a multi-user driving simulator system to explore the patterns of vehicle fleet rear-end collisions occurrence under different foggy conditions and speed limits[J]. Transportation Research Part F:Traffic Psychology and Behaviour, 2020, 74: 161-172. doi: 10.1016/j.trf.2020.08.025
    [13]
    姚镇海,周建平,邱新法. 基于高速公路视频图像的能见度计算[J]. 南京信息工程大学学报(自然科学版),2019,11(1): 85-90.

    YAO Zhenhai, ZHOU Jianping, QIU Xinfa. Visibility calculation algorithm based on highway video image[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2019, 11(1): 85-90.
    [14]
    PALVANOV A, CHO Y. VisNet: deep convolutional neural networks for forecasting atmospheric visibility[J]. Sensors, 2019, 19(6): 1343-1376. doi: 10.3390/s19061343
    [15]
    石玉立,王彬,卜帆. 基于图像特征的大气能见度估算方法[J]. 南京理工大学学报(自然科学版),2018,42(5): 552-559.

    SHI Yuli, WANG Bin, BU Fan. Atmospheric visibility measurement based on image feature[J]. Journal of Nanjing University of Science and Technology, 2018, 42(5): 552-559.
    [16]
    余乐,吴国雄,何兆益. 山地城市全透水沥青路面结构力学响应分析[J]. 公路,2021,66(11): 1-7.

    YU Le, WU Guoxiong, HE Zhaoyi. Analysis of structural mechanical response of fully permeable asphalt pavement in mountain city[J]. Highway, 2021, 66(11): 1-7.
    [17]
    季天剑. 降雨对轮胎与路面附着系数的影响[D]. 南京: 东南大学, 2004.
    [18]
    RUSSAM K, ROSS N F. The depth of rain water on road surfaces[R]. London: Road Research Laboratory, Ministry of Transport,1968.
    [19]
    GALLAWAY B M, ROSE J G. The effects of rainfall intensity, pavement cross slope, surface texture, and drainage length on pavement water depths[R]. Washington D. C.: Federal Highway Administration, 1972.
    [20]
    WAMBOLD J C, HENRY J J, HEGMON R R. Evaluation of pavement surface texture significance and measurement techniques[J]. Wear, 1983, 83(2): 351-368.
    [21]
    ANDERSON J A. Depth of rain water on road surface[J]. Highways and Transportation, 1995, 42(5): 45-49.
    [22]
    MANCOSU F, PARRY A, TORRE F L. Friction variation due to speed and water depth[C]//Fourth International Symposium on Pavement Surface Characteristics on Roads & Airfields. Nantes: PIARC,2000: 249-258 .
    [23]
    CHESTERTON J, NANCEKIVELL N, TUNNICLIFFE N. The use of the gallaway formula for aquaplaning evaluation in New Zealand[C]//Transit NZ and NZIHT 8th Annual Conference. Vermont South: ARRB Group Limited,2006: 1-22.
    [24]
    ANDERSON D A, HUEBNER R S, REED J R, et al. Improved surface drainage of pavements[R]. Washington D. C.: Transportation Research Board, 1998.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(9)

    Article views(359) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return