Citation: | CHE Quanwei, LEI Cheng, LI Yuru, ZHU Tao, TANG Zhao, YAO Shuguang. Data Mining Model Based on Neural Network and Its Application on Anti-Climber Device[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 995-1001. doi: 10.3969/j.issn.0258-2724.20200266 |
CHADWICK S G, ZHOU N Y, SAAT M R. Highway-rail grade crossing safety challenges for shared operations of high-speed passenger and heavy freight rail in the US[J]. Safety Science, 2014, 68: 128-137. doi: 10.1016/j.ssci.2014.03.003
|
KIMURA S, MOCHIDA T, KAWASAKI T, et al. Evaluation of energy absorption of crashworthy structure for railway’s rolling stock (numerical simula-tion applying damage-mechanics model)[J]. Journal of Solid Mechanics & Materials Engineering, 2013, 7(1): 102-117.
|
PEREIRA M S. Structural crashworthiness of railway vehicles[C]//Proceedings of the 7th World Congress of Rail Research. Montreal: [s.n.], 2006: 1-15.
|
KIRKPATRICK S W, SCHROEDER M, SIMONS J W. Evaluation of passenger rail vehicle crashworthiness[J]. International Journal of Crashworthiness, 2001, 6(1): 95-106. doi: 10.1533/cras.2001.0165
|
JIANG P, TIAN C J, XIE R Z, et al. Experimental investigation into scaling laws for conical shells struck by projectiles[J]. International Journal of Impact Engineering, 2006, 32(8): 1284-1298. doi: 10.1016/j.ijimpeng.2004.09.015
|
WANG M, LIU Z, QIU Y, et al. Study on the similarity laws for local damage effects in a concrete target under the impact of projectiles[J]. Shock and Vibration, 2015, 2015: 1-16.
|
SHAO H, XU P, YAO S, et al. Improved multibody dynamics for investigatingenergy dissipation in train collisions based on scaling laws[J]. Shock and Vibration, 2016, 2016: 1-11.
|
XU L J, LU X Z, SMITH S T, et al. Scaled model test for collision between over-height truck and bridge superstructure[J]. International Journal of Impact Engineering, 2012, 49: 31-42. doi: 10.1016/j.ijimpeng.2012.05.003
|
XIE S C, LIANG X, ZHOU H, et al. Crashworthiness optimisation of the front-end structure of thelead car of a high-speed train[J]. Structuraland Multidisciplinary Optimization, 2016, 53(2): 339-347. doi: 10.1007/s00158-015-1332-y
|
MJOLSNESS E, DECOSTE D. Machinelearning for science:state of the art and future prospects[J]. Science, 2001, 293(5537): 2051-2055.
|
PARK J, CHEN Z, KILIARIS L, et al. Intelligent vehicle power control based on machine learning of optimal control parameters and prediction of road type and traffic congestion[J]. IEEE Transactions on Vehicular Technology, 2009, 58(9): 4741-4756. doi: 10.1109/TVT.2009.2027710
|
FATMA G, DERYA Y. Congestion prediction system with artificial neural networks[J]. International Journal of Interdisciplinary Telecommunications and Networking, 2020, 12(3): 28-43. doi: 10.4018/IJITN.2020070103
|
LI Xiugang, LORD D, ZHANG Yunlong, et al. Predicting motor vehicle crashes using support vector machine models[J]. Accident Analysis and Prevention, 2008, 40(4): 1611-1618.
|
RAHMANPANAH H, MOULOODI S, BURVILL C, et al. Prediction of load-displacement curve in a complex structure using artificial neural networks:a study on a long bone[J]. International Journal of Engineering Science, 2020, 154: 103319.1-103319.17. doi: 10.1016/j.ijengsci.2020.103319
|
PAWLUS W, KARIMI H R, ROBBERSMYR K G. Data-based modeling of vehicle collisions by nonlinear autoregressive model and feedforward neural network[J]. Information Sciences, 2013, 235(6): 65-79.
|
SHAHIDI P, MARAINI D, HOPKINS B, et al. Railcar bogie performance monitoring using mutual information and support vector machines[C]//Annual Conference of the Prognostics and Health Management Society Coronado. New York: IEEE, 2015: 1-10.
|
BHADURI S. Algorithm to enable intelligent rail break detection[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2013.
|
WEI Xiukun, JIA Limin, GUO Kun, et al. On fault isolation for rail vehicle suspension systems[J]. Vehicle System Dynamics, 2014, 52(6): 847-873. doi: 10.1080/00423114.2014.904904
|
TAHERI M, AHMADIAN M. Machine learning from computer simulations with applications in rail vehicle dynamics[J]. Vehicle System Dynamics, 2016, 54(5): 653-666. doi: 10.1080/00423114.2016.1150497
|
DIAS J P, PEREIRA M S. Optimization methods for crashworthiness design using multibody models[J]. Computers and Structures, 2004, 82(17/18/19): 1371-1380.
|
TANG Zhao, ZHU Yunrui, NIE Yinyu, et. al. Data-driven train set crash dynamics simulation[J]. Vehicle System Dynamics, 2017, 55(2): 149-167. doi: 10.1080/00423114.2016.1249377
|
NIE Yinyu, TANG Zhao, LIU Fengjia, et al. A data-driven dynamics simulation framework for railway vehicles[J]. Vehicle System Dynamics, 2018, 56(3): 406-427. doi: 10.1080/00423114.2017.1381981
|
LI Yuru, ZHU Tao, TANG Zhao, et. al. Inversion prediction of back propagation neural network in collision analysis of anti-climbing device[J]. Advances in Mechanical Engineering, 2020, 12(5): 1-13.
|
FERNÁNDEZ P M, ZURIAGA P S, SANCHIS I V, et. al. Neural networks for modelling the energy consumption of metro trains[J]. Proceedings of The Institution of Mechanical Engineers Part F:Journal of Rail and Rapid Transit, 2019, 234(7): 1-12.
|
LAPEDES A, FARBER R. Nonlinear signal processing using neural network: predicting and system modeling[R]. Los Alamos: Los Alamos National Laboratory, 1987.
|