• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LÜ Biao, GAO Ziqiang, GUAN Xinyi, LIU Yiliu. Resilience Assessment of Urban Road Network Based on Day-to-Day Traffic Assignment[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1181-1190. doi: 10.3969/j.issn.0258-2724.20191214
Citation: LÜ Biao, GAO Ziqiang, GUAN Xinyi, LIU Yiliu. Resilience Assessment of Urban Road Network Based on Day-to-Day Traffic Assignment[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1181-1190. doi: 10.3969/j.issn.0258-2724.20191214

Resilience Assessment of Urban Road Network Based on Day-to-Day Traffic Assignment

doi: 10.3969/j.issn.0258-2724.20191214
  • Received Date: 29 Dec 2019
  • Rev Recd Date: 07 Mar 2020
  • Available Online: 21 Jul 2020
  • Publish Date: 15 Dec 2020
  • In order to effectively evaluate road network performance under major disruptive events, on the basis of a day-to-day traffic assignment (DTA) model, an urban road network resilience assessment model is proposed. With explicit consideration on the dynamic characteristics of traffic flow under a major disruptive event, a DTA model that comprehensively cover the influencing factors including travelers’ cognitive update and behavioral inertia is constructed, and then a heuristic solution algorithm is designed. Based on the DTA model, a road network accessibility index is defined, and a resilience metric as well as an evaluation model are established, which can fully measure the system performance during the disruptive event life cycle. Finally a case study is performed on the Nguyen and Dupuis network. The results show that, after the disruptive event, the road network resilience fluctuates in the first 10 days; then as the traffic flow distribution tends to be stable, it increases monotonically from 0.323 on the 10th day to 0.794 on the 50th day, an increase by 145.77%. Compared to classical stochastic user equilibrium (SUE) model, there are significant differences in both road network accessibility and resilience indicators obtained from DTA model. The road network accessibility index under SUE model monotonically increases with time, while that index under DTA model fluctuates sharply in the first 15 days, after then increasing monotonically. It indicates that, in order to acquire accurate road network resilience metric, travel decision behaviors and corresponding traffic assignment model must be accurately assumed in the first place. All factors including travelers’ behavior inertia, the degradation degree and recovery rate of link capacity, and road network congestion degree have a significant impact on the distribution of traffic flow, which in turn affect road network accessibility index and ultimately result in obvious changes in road network resilience metric. As a result, relevant parameters should be reasonably calibrated under full investigation over practical applications.

     

  • FATURECHI R, MILLER-HOOKS E. Measuring the performance of transportation infrastructure systems in disasters:a comprehensive review[J]. Journal of Infrastructure Systems, 2015, 21(1): 1-15.
    ZHOU Y M, WANG J W, YANG H. Resilience of transportation systems:concepts and comprehensive review[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(12): 4262-4276.
    PATRIARCA R, BERGSTRÖM J, GRAVIO G D, et al. Resilience engineering:current status of the research and future challenges[J]. Safety Science, 2018, 102(2): 79-100.
    MURRAY-TUITE P M. A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions[C]// Proceedings of the 2006 Winter Simulation Conference.Monterey: IEEE, 2006: 1398-1405.
    TWUMASI-BOAKYE R, SOBANJO J. Resilience of regional transportation networks subjected to hazard-induced bridge damages[J]. Journal of Transportation Engineering, 2018, 144(10): 04018062.1-04018062.13
    HENRY D, RAMIREZ-MARQUEZ J E. Generic metrics and quantitative approaches for system resilience as a function of time[J]. Reliability Engineering and System Safety, 2012, 99(3): 114-122.
    BAROUD H, BARKER K, RAMIREZ-MARQUEZ J E, et al. Importance measures for inland waterway network resilience[J]. Transportation Research Part E:Logistics and Transportation Review, 2014, 62: 55-67. doi: 10.1016/j.tre.2013.11.010
    BAROUD H, RAMIREZ-MARQUEZ J E, BARKER K, et al. Stochastic measures of network resilience:applications to waterway commodity flows[J]. Risk Analysis, 2014, 34(7): 1317-1335. doi: 10.1111/risa.12175
    FARHADI N, PARR S A, MITCHELL K N, et al. Use of nationwide automatic identification system data to quantify resiliency of marine transportation systems[J]. Transportation Research Record, 2016, 2549(1): 9-18. doi: 10.3141/2549-02
    NOGAL M, O’CONNOR A, CAULFIELD B, et al. Resilience of traffic networks:from perturbation to recovery via a dynamic restricted equilibrium model[J]. Reliability Engineering and System Safety, 2016, 156(1): 84-96.
    NOGAL M, HONFI D. Assessment of road traffic resilience assuming stochastic user behavior[J]. Reliability Engineering and System Safety, 2019, 185: 72-83. doi: 10.1016/j.ress.2018.12.013
    严新平,熊伟. 非常态事件下城市交通的解决方案研究[J]. 交通运输系统工程与信息,2008,8(6): 78-84.

    YAN Xinping, XIONG Wei. Urban traffic schemes under the influence of the emergency accidents[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(6): 78-84.
    HE Xiaozheng, LIU H X. Modeling the day-to-day traffic evolution process after an unexpected network disruption[J]. Transportation Research Part B:Methodological, 2012, 46(1): 50-71. doi: 10.1016/j.trb.2011.07.012
    张玺,刘海旭,蒲云. 交通事件影响下的路径行程时间变化分析[J]. 西南交通大学学报,2013,48(5): 928-933.

    ZHANG Xi, LIU Haixu, PU Yun. Analysis of route travel time variation of road network suffering traffic incidents[J]. Journal of Southwest Jiaotong University, 2013, 48(5): 928-933.
    ZHANG X G, MAHADEVAN S, SANKARARAMAN S, et al. Resilience-based network design under uncertainty[J]. Reliability Engineering and System Safety, 2018, 169(1): 364-379.
    JHA M, MADANAT S, PEETA S. Perception updating and day-to-day travel choice dynamics in traffic networks with information provision[J]. Transportation Research Part C: Emerging Technologies, 1998, 6(3): 189-212. doi: 10.1016/S0968-090X(98)00015-1
    刘天亮,黄海军,陈剑. 考虑风险规避和认知更新的日常择路行为演进[J]. 交通运输工程学报,2008,8(4): 90-94,103.

    LIU Tianliang, HUANG Haijun, CHEN Jian. Evolution of day-to-day route choice behavior considering risk aversion and perception updating[J]. Journal of Traffic and Transportation Engineering, 2008, 8(4): 90-94,103.
    黄海军. 城市交通网络平衡分析——理论与实践[M]. 北京: 人民交通出版社, 1994.
    张玺,郭洪洋,刘海旭,等. 基于认知更新的随机动态分配模型[J]. 交通运输系统工程与信息,2013,13(1): 118-123,178. doi: 10.1016/S1570-6672(13)60095-1

    ZHANG Xi, GUO Hongyang, LIU Haixu, et al. Perception updating based stochastic dynamic assignment model[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(1): 118-123,178. doi: 10.1016/S1570-6672(13)60095-1
    张玺. 基于网络效率的日变路网脆弱性识别方法[J]. 交通运输系统工程与信息,2017,17(2): 176-182.

    ZHANG Xi. Day-to-day road network vulnerability identification based on network efficiency[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(2): 176-182.
    LUATHEP P, SUMALEE A, HO H, et al. Large-scale road network vulnerability analysis:a sensitivity analysis based approach[J]. Transportation, 2011, 38(5): 799-817. doi: 10.1007/s11116-011-9350-0
    吕彪,刘一骝,刘海旭. 协同考虑脆弱性与可靠性的城市道路网络设计[J]. 西南交通大学学报,2019,54(5): 1093-1103.

    LÜ Biao, LIU Yiliu, LIU Haixu. Urban road network design with balance between vulnerability and reliability[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1093-1103.
    NGUYEN S, DUPUIS C. An efficient method for computing traffic equilibria in networks with asymmetric transportation costs[J]. Transportation Science, 1984, 18(2): 185-202. doi: 10.1287/trsc.18.2.185
  • Relative Articles

    [1]ZHAO Xueting, HU Liwei, KOU Fangling. Determination of Influence Range of Urban Traffic Congestion and Identification of Key Road Sections[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1389-1397. doi: 10.3969/j.issn.0258-2724.20220413
    [2]SUN Chao, YIN Haowei, ZHANG Wei, LI Menghui. Traffic Equilibrium Model of Reliable Network Based on Bounded Rationality[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 83-90. doi: 10.3969/j.issn.0258-2724.20210679
    [3]JIN Shoujie, LI Kunpeng, ZHAN Dong, WAN Yongsheng, ZHONG Wei, FENG Chao. Safety Assessment Method of Collector Shoe-Rail Relationship in Urban Rail Transits[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1029-1034. doi: 10.3969/j.issn.0258-2724.20200075
    [4]LIU Fengbo, ZHOU Tingliang, WANG Xiaomin. Calculation and Evaluation Method of Passenger Flow Distribution under Urban Rail Transit Failure[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 921-927, 966. doi: 10.3969/j.issn.0258-2724.20200602
    [5]NONG Xingzhong, SHI Haiou, YUAN Quan, ZENG Wenqu, ZHENG Qing, DING Guofu. Review on BIM Technology Used in Urban Rail Transit Projects[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 451-460. doi: 10.3969/j.issn.0258-2724.20200018
    [6]GAN Jiahua, MAO Xinhua, ZHAO Jing. Optimal Evacuation Model of Parking Vehicles in Dynamic Traffic Flows[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 123-130. doi: 10.3969/j.issn.0258-2724.20190611
    [7]LIN Sheng, LIN Xiaohong, FENG Ding. Reliability Evaluation of Relay Protection for Traction Substation of Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1102-1109. doi: 10.3969/j.issn.0258-2724.2018.06.002
    [8]ZHAI Wanming, ZHAO Chunfa. Frontiers and Challenges of Sciences and Technologies in Modern Railway Engineering[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    [9]LÜ, Biao, LIU Haixu, PU Yun, WANG Keming, GUO Qian. Traffic Assignment Model Based on Cumulative Prospect Theory for Stochastic Road Network with Heterogeneous Users[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 173-182. doi: 10.3969/j.issn.0258-2724.2015.01.026
    [10]QIN Juan, PU Yun, LÜ, Biao. Road System Optimum Equilibrium Model Based on Mean-Excess Travel Time[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 358-366. doi: 10.3969/j.issn.0258-2724.2014.02.026
    [11]ZHANG Xi, LIU Haixu, PU Yun. Analysis of Route Travel Time Variation of Road Network Suffering Traffic Incidents[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 928-933. doi: 10.3969/j.issn.0258-2724.2013.05.023
    [12]LV Biao, PU Yun, LIU Haixu. Stochastic Mean-Excess User Equilibrium Model with Multiple Classes and Elastic Demand[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 516-525. doi: 10.3969/j.issn.0258-2724.2012.03.026
    [13]PU Yun, LIU Haixu. Reliable Network Design Based on Partial Stochastic User Equilibrium[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 321-325. doi: 10.3969/j.issn.0258-2724.2011.02.024
    [14]CHEN Wei-Rong, GUAN Pei, ZOU Yuexian. Automatic Incident Detection Technology Based on SVM[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 63-67. doi: 10.3969/j.issn.0258-2724.2011.01.010
    [15]LIU Jian, JIANG Jun, XIE Hai-Fei. Occlusion and Duplicate Setting of Roadside Traffic Signs for Ordinary Multilane Highways[J]. Journal of Southwest Jiaotong University, 2011, 24(6): 1019-1024. doi: 10.3969/j.issn.0258-2724.2011.06.022
    [16]ZHANG Bo, JUAN Zhi-Cai, LIN Xu-Xun. Stochastic User Equilibrium Model Based on Cumulative Prospect Theory[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 868-874. doi: 10.3969/j.issn.0258-2724.2011.05.026
    [17]SHI Gui-Fang-, Yuan- Gao-, Cheng-Jian-Chuan, . Calculation of Speed Lim it on Foggy Days[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 136-140. doi: 10. 3969/.j issn. 0258-2724. 2
    [18]XU Bing, ZHU Daoli. Variational Inequality Equilibrium Model for Multiclass and Multicriteria Stochastic Traffic Networks with Elastic Demands[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 114-119.
    [19]WANG Jianling, JIANG Yangsheng, PU Yun. Stochastic User Equilibrium Assignment Based on Traffic State[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 310-314.
    [20]TANG Zhihui, ZUO Tingliang, ZHOU Meiyu. Application of Vehicle Driving Simulators in Traffic Engineering[J]. Journal of Southwest Jiaotong University, 2006, 19(5): 630-634.
  • Cited by

    Periodical cited type(22)

    1. 张晓瑞,朱慧莲,郭龙坤,王振波. 基于句法测度的区域交通网络可达性评价研究. 山东理工大学学报(自然科学版). 2025(03): 9-17 .
    2. 刘文捷,谷志鹏,杨帆. 基于结构性和功能性的城市路网韧性研究——以郴州市为例. 国土资源导刊. 2025(01): 37-45 .
    3. 杨国俊,毛建博,田里,唐光武. 基于碎片化分区的桥梁网络震后修复优先级分析与优化. 工程力学. 2024(05): 211-223 .
    4. 张洁斐,任刚,唐磊,杜建玮,顾厚煜,宋建华. 城市多模式交通网络韧性评估研究综述. 交通信息与安全. 2024(03): 102-113 .
    5. 吴桐,黄凯,刘志远,蒋玮. 交通网络和电力网络融合承载力的研究综述. 汽车安全与节能学报. 2024(05): 634-649 .
    6. 徐鹏程,路庆昌,李静,刘鹏,崔欣. 连续暴雨灾害下道路网络时变韧性建模与分析. 武汉大学学报(工学版). 2024(11): 1610-1618 .
    7. 王文,徐祝源,张文鸽. 物流系统韧性与提升策略. 物流科技. 2024(23): 14-17 .
    8. 何祥,袁永博,周方,汤旸. 道路网络路段韧性重要度的EFAST评价方法. 安全与环境学报. 2023(03): 675-681 .
    9. 庞远兵,张玺,石超峰. 灾后ATIS对城市道路交通网络韧性的影响. 重庆理工大学学报(自然科学). 2023(03): 39-46 .
    10. 宁尧,张向峰,李娟娟,刘洁,张铭. 恶劣天气下城市轨道交通运营韧性评估技术研究. 现代城市轨道交通. 2023(05): 83-89 .
    11. 郝媛,徐天东,王雨轩,陈莎,王继峰,李志超,张雷. 面向城市管理平台的道路网韧性评价指标体系构建. 城市交通. 2023(02): 60-72 .
    12. 纪颖超,殷杰. “一带一路”沿线国家旅游合作联系网络结构韧性:综合评估与动因甄别. 人文地理. 2023(04): 176-185 .
    13. 李洁,刘邱琪,张欣宇,韦媛媛,张晶晶. 基于组合赋权-云模型的高速公路网交通韧性评价. 湖南大学学报(自然科学版). 2023(11): 224-234 .
    14. 曾靖翔,严二虎,周震宇. 等级公路路段韧性评价方法. 公路交通科技. 2023(S1): 199-206 .
    15. 陈长坤,何凡,赵冬月,谢明峰. 基于系统机能曲线的城市道路公共交通系统韧性评估方法. 清华大学学报(自然科学版). 2022(06): 1016-1022 .
    16. 许慧,李杨,邓宁辉,杜磊. 城市复杂公共空间系统韧性建模研究. 系统工程理论与实践. 2022(07): 1964-1978 .
    17. 张宸铭,范钦栋,李延锋,彭茜,赵清贺,张雯龙. 暴雨内涝情景下城市路网通行效率变化与修复策略——以郑州7·20暴雨灾害为例. 经济地理. 2022(07): 62-72 .
    18. 陈思妤,李洁,胡演诚,姜宇. 面向常发性拥堵的城市局部路网韧性评价与分析. 交通信息与安全. 2022(04): 138-147 .
    19. 于娱,马代鹏,王贤梅. 国际铁矿资源全产业链产品的贸易网络韧性. 资源科学. 2022(10): 2006-2021 .
    20. 王兴隆,赵俊妮,贺敏. 基于贝叶斯网络的空中交通运输系统韧性评价. 南京航空航天大学学报. 2022(06): 1121-1130 .
    21. 左上菲. 我国韧性城市研究的热点及演化趋势分析——基于CiteSpace的可视化研究. 黑龙江生态工程职业学院学报. 2021(05): 12-16 .
    22. 郭羽羽,罗福周,钟兴润. 基于熵权-正态云模型的城市安全韧性评估研究. 灾害学. 2021(04): 168-174 .

    Other cited types(54)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views(1050) PDF downloads(100) Cited by(76)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return