• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
CAI Xuan, WANG Changlin. BeiDou Navigation Satellite System/Inertial Measurement Unit Integrated Train Positioning Method Based on Improved Unscented Kalman Filter Algorithm[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 393-400. doi: 10.3969/j.issn.0258-2724.20170816
Citation: ZHAO Chenggong, ZHAO Renda, JIA Yi, WANG Yongbao, LI Fuhai. Lateral Displacement Restrainer of Beam Based on Elastic Deviation Prevention and Plastic Unloading Mechanism[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 760-768. doi: 10.3969/j.issn.0258-2724.20190741

Lateral Displacement Restrainer of Beam Based on Elastic Deviation Prevention and Plastic Unloading Mechanism

doi: 10.3969/j.issn.0258-2724.20190741
  • Received Date: 28 Jul 2019
  • Rev Recd Date: 18 Feb 2020
  • Available Online: 16 Apr 2020
  • Publish Date: 15 Aug 2021
  • In order to alleviate the lateral deflection or overturning of the beam under various factors, and improve the rigid blocking defect of the existing anti-offset equipment, a lateral-movement limiting device of beam body based on the elastic anti-deflection and plastic unloading concept is designed by referring to the mechanical shock absorption and isolation device. In this device, spring parameters (for elastic deviation prevention under normal conditions) are selected according to the reduced data of bending strength of the pier bottom and the maximum allowable transverse displacement of the beam, and the number of anchoring bolts in the weak layer (for unloading pier protection under large loads) is calculated using the reduced data of support reaction force. Taking a curved continuous girder bridge in Shaanxi Province as an example, the displacement and stress increments of the bridge with and without equipment of the device under static and dynamic actions are simulated using the finite element analysis software Midas Civil. Data comparison shows that the radial displacement restriction effect of the equipment under various static loads is remarkable (the average displacement limit rate is more than 70%, and the main displacement inducement limit rate is more than 80%); in most time-histories of the El Centro Site waves, the displacement and stress increments of the beam with equipment are smaller than those without equipment, and the peak displacement (the reduction rate is above 90%) and the peak stress (the average reduction rate is about 50%) are significantly reduced after installing the equipment. This shows that the equipment can effectively reduce the dynamic displacement increment of the beam without stress concentration and has good seismic deviation prevention effect.

     

  • 中交公路规划设计院. 公路桥涵设计通用规范: JTG D60—2015[S]. 北京: 人民交通出版社, 2015.
    杨昀, 周列茅, 周勇军. 弯桥与高墩[M]. 北京: 人民交通出版社, 2011: 11.
    赵成功. 桥梁纠偏技术及其应用[D]. 西安: 长安大学, 2015.
    石岩,王军文,秦洪果,等. 桥梁抗震挡块研究进展[J]. 世界地震工程,2013,29(2): 90-95. doi: 10.3969/j.issn.1007-6069.2013.02.015

    SHI Yan, WANG Junwen, QIN Hongguo, et al. Study on anti-knock block for bridge[J]. World Earthquake Engineering, 2013, 29(2): 90-95. doi: 10.3969/j.issn.1007-6069.2013.02.015
    汤振辉. 桥梁抗震钢挡块计算方法与实验研究[D]. 重庆: 重庆交通大学, 2015.
    MALEKI S. Seismic modeling of skewed bridges with elastomeric bearings and side retainers[J]. Journal of bridge Engineering., 2005, 10(4): 442-449. doi: 10.1061/(ASCE)1084-0702(2005)10:4(442)
    KIM H S, KIM J, AN D W. Development of integrated system for progressive collapse analysis of building structures considering dynamic effects[J]. Advances in Engineering Software, 2009, 40(1): 1-8. doi: 10.1016/j.advengsoft.2008.03.011
    郑万山,唐光武. 桥梁抗震挡块拟静力试验研究[J]. 公路交通技术,2013(4): 54-58,65. doi: 10.3969/j.issn.1009-6477.2013.04.014

    ZHEN Wanshan, TANG Guangwu. Quasi-static test research on aseismic blocks of bridges[J]. Technology of Highway and Transport, 2013(4): 54-58,65. doi: 10.3969/j.issn.1009-6477.2013.04.014
    庄鑫,李建中,王瑞龙. 横向抗震挡块对桥梁抗震性能的影响分析[J]. 石家庄铁道大学学报(自然科学版),2014,27(1): 14-18.

    ZHUANG Xin, LI Jianzhong, WANG Ruilong. Effect analysis of lateral anti-knock block on bridge’s aseismic performance[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2014, 27(1): 14-18.
    李炼. 橡胶与纤维布组合体抗震性能研究[D]. 大连: 大连理工大学, 2015.
    许祥,刘伟庆,徐秀丽. 新型抗震挡块的抗震性能[J]. 东南大学学报(自然科学版),2009,39(增刊2): 165-168.

    XU Xiang, LIU Weiqing, XU Xiuli. Aseismic performance of new side retainer[J]. Journal of Southeast University (Natural Science Edition), 2009, 39(S2): 165-168.
    朱勇毅,罗富元. 中小跨桥梁横向抗震挡块的合理设置方式[J]. 城市道桥与防洪,2014(11): 94-98. doi: 10.3969/j.issn.1009-7716.2014.12.024
    刘龄嘉,邵妍,贺拴海. 公路桥梁横向防落梁设施抗震性能评价[J]. 郑州大学学报(工学版),2013,34(6): 72-77.

    LIU Lingjia, SHAO Yan, HE Shuanghai. Aseismic performance evaluation of highway bridge’s lateral anti-collapse beams[J]. Journal of Zhengzhou University (Engineering Science Edition), 2013, 34(6): 72-77.
    BILLAH A H M, ALAM M S, BHUIYAN A R. Seismic performance of a multi-pan bridge fitted with superelastic SMA-based isolator[C]//Intl. Proc. IABSE-JSCE Joint Conference on Advances in Bridge Engineering-II. Haka: IABSE-JSCE, 2010: 8-10.
    JI Xiaodong, JIANG Feiming, QIAN Jiaru. Seismic behavior of steel tube-double steel plate-concrete composite perimental tests[J]. Journal of Constructional Research, 2013, 86: 17-30. doi: 10.1016/j.jcsr.2013.03.011
    PADGETT J E, DESROCHES R. Three-dimensional nonlinear seismic performance evaluation of retrofit measures for typicalsteel girder bridges[J]. Engineering Structures, 2008, 30(7): 1869-1878. doi: 10.1016/j.engstruct.2007.12.011
    朱文正. 公路桥梁减、抗震防落梁系统研究[D]. 西安: 长安大学, 2004.
    龚恋,徐略勤,李建中,等. 近场地震下采用板式橡胶支座的简支梁桥横向位移控制[J]. 结构工程师,2018,34(2): 70-78. doi: 10.3969/j.issn.1005-0159.2018.02.010

    GONG Lian, XU Lueqin, LI Jianzhong, et al. Transverse displacement control of simply supported beam bridge with plate rubber bearing under near-field earthquake[J]. Structural Engineer, 2018, 34(2): 70-78. doi: 10.3969/j.issn.1005-0159.2018.02.010
    安永日,汤振辉,梁磊. 吸能式钢挡块抗震效应分析[J]. 公路交通技术,2015(6): 38-42.

    AN Yongri, TANG Zhenhui, LIANG Lei. Analysis of seismic effect of energy absorbing steel block[J]. Technology of Highway and Transport, 2015(6): 38-42.
    何维. 优化型桥梁金属耗能隔震挡块的抗震性能研究[J]. 公路交通科技,2018,35(12): 72-79.

    HE Wei. Study on seismic behavior of optimized bridge metal energy dissipation isolation block[J]. Technology of Highway and Transport, 2018, 35(12): 72-79.
    邓开来,潘鹏,冉田苒,等. 耗能型桥梁抗震挡块试验研究[J]. 振动与冲击,2014,33(22): 7-12.

    DENG Kailai, PAN Peng, RAN Tianran, et al. Experimental study on seismic block of energy-dissipating bridge[J]. Journal of Vibration and Shock, 2014, 33(22): 7-12.
    邓育林,彭天波,李建中. 地震作用下桥梁结构横向碰撞模型及参数分析[J]. 振动与冲击,2007,26(9): 104-107,119. doi: 10.3969/j.issn.1000-3835.2007.09.025

    DENG Yulin, PENG Tianbo, LI Jianzhong. Pounding model of bridge structures and parameter analysis under transverse earthquake[J]. Journal of Vibration and Shock, 2007, 26(9): 104-107,119. doi: 10.3969/j.issn.1000-3835.2007.09.025
    叶见曙. 结构设计原理[M]. 北京: 人民交通出版社, 2014: 70.
    常生福. 圆形截面钢筋混凝土受弯构件正截面承载力的简化计算[J]. 中国港湾建设,2010,166(2): 15-17. doi: 10.3969/j.issn.1003-3688.2010.02.005

    CHANG Shengfu. Simplified calculation of the bearing capacity of the normal section of a reinforced concrete flexural member with circular section[J]. China Harbour Engineering, 2010, 166(2): 15-17. doi: 10.3969/j.issn.1003-3688.2010.02.005
    赵成功,王小冬,杨德厚,等. 既有中小跨径曲线梁桥梁体径向爬移机理分析[J]. 中外公路,2018,38(3): 162-167.

    ZHAO Chenggong, WANG Xiaodong, YANG Deihou, et al. Analysis of radial crawling mechanism of existing curved beam bridges with small and medium spans[J]. Chinese and Foreign Highways, 2018, 38(3): 162-167.
  • Relative Articles

    [1]ZHOU Danfeng, ZHU Pengxiang, QU Minghe, WANG Lianchun, LI Jie. Influences of Girder Parameters on the Maglev Vehicle-Guideway Coupled Vibration[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240381
    [2]WANG Yawei, ZHU Jin, ZHENG Kaifeng, SU Yonghua, GUO Hui, LI Yongle. Coupled Vibration Analysis of Earthquake-Wind-Vehicle-Bridge for Long-Span Bridges Considering Scouring Effect[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 323-331. doi: 10.3969/j.issn.0258-2724.20220091
    [3]SHAO Changjiang, CUI Haomeng, QI Qiming, WEI Wang, ZHUANG Weilin, HUANG Hui, YUAN Dezheng. Optimization of Seismic Isolation Bearing Scheme of RC Long-Span Soft Arch Bridge under Near-Field and Far-Field Ground Motions[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 615-626. doi: 10.3969/j.issn.0258-2724.20220122
    [4]JIA Hongyu, WU Weichang, YOU Gang, YANG Lei, PENG Qihui, ZHENG Shixiong. Damage Analysis of Long-Span Continuous Beam Bridges Under Strong Earthquakes[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1423-1431. doi: 10.3969/j.issn.0258-2724.20220072
    [5]YANG Menggang, MENG Dongliang, WEI Kanghua, QIAO Jiandong. Transverse Seismic Pounding Effect and Pounding Reduction of Simply-Supported Girder Bridge for High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 100-108. doi: 10.3969/j.issn.0258-2724.20180277
    [6]ZHANG Yun, TAN Ping, HUANG Jiadong. Failure Mode of Isolated Beam Bridge by Weighted Rank Sum Ratio Method[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 72-78. doi: 10.3969/j.issn.0258-2724.2018.01.009
    [7]XU Baishun, MA Ming, QIAN Yongjiu, TANG Jishun, ZHANG Fang. Numerical Simulation Analysis of RC Beams Strengthened with CFRP Using Viscoelasticity Constitutive[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 994-1000. doi: 10.3969/j.issn.0258-2724.2017.05.021
    [8]ZHANG Xun, SU Bin, LI Xiaozhen, ZHANG Jianqiang. Special Longitudinal Forces between Continuous Welded Rail and Long-Span Simply Supported Beam Bridge with High Piers and Their Influences[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 57-64. doi: 10.3969/j.issn.0258-2724.2016.01.009
    [9]LI Yongle, TI Zilong, WANG Bin, LIAO Haili. Numerical Simulation of Wind Characteristics over Bridge Site Near Y-shaped River Junction in Mountainous Area[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 341-348. doi: 10.3969/j.issn.0258-2724.2016.02.013
    [10]CUI Shengai, ZHU Bing. Coupling Vibration Simulation of Long-Span Continuous Beam Bridge on Passenger Dedicated Railway[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 66-71.
    [11]TANGHe-qiang, SHENRui-li. Analysis of Loaded Frequency of Simply-Supported Beam Bridge[J]. Journal of Southwest Jiaotong University, 2004, 17(5): 628-832.
    [12]GE Yu-mei, LI Yong-le, HE Xiang-dong. Study on Wind-Induced Loads of Train-Bridge System by Wind Tunnel Test[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 612-616.
    [13]QU Ai-ping, GAO Shu-ying. Vibration Characteristics of a 3-Dimensional Beam-Pier-Pile System[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 641-644.
    [14]Cen Minyi, Qu Guowan, Liao Shuzhong. GPS Construction Survey of the Piles, Towers and Anchorages of Humen Bridge[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 560-564.
  • Cited by

    Periodical cited type(11)

    1. 张昕,翟凌露,王舰深,张志,吴晨. 基于加权融合的常导高速磁浮列车UKF定位算法. 西南交通大学学报. 2024(04): 832-838 . 本站查看
    2. 张雁鹏,张容容,孟楠,张冰清,肖夏. 零速修正辅助的可见光通信列车连续定位方法. 工程科学与技术. 2024(06): 248-257 .
    3. 王运明,程相,李卫东,初宪武. 基于因子图的BDS/IMU列车定位信息融合模型. 铁道科学与工程学报. 2023(03): 1077-1084 .
    4. 张雁鹏,孟楠,胥亚丽,肖夏. 基于Newton-UKF的可见光通信列车定位优化. 华中科技大学学报(自然科学版). 2023(06): 166-172 .
    5. 刘丹,姜维,蔡伯根,王剑,上官伟. 基于简化鲁棒UKF的GNSS/INS紧组合列车定位方法. 铁道学报. 2023(07): 62-71 .
    6. 郭斐,靳文军. 基于GPS钟差预测模型的列车定位技术研究. 铁路通信信号工程技术. 2022(04): 1-5 .
    7. 蔡煊,陶汉卿,侯宇婷,廖继轩,肖金梅,宋晓波. 北斗卫星导航系统在列车定位中的应用研究与发展. 铁道科学与工程学报. 2022(08): 2417-2427 .
    8. 杨佳,彭瑞召,季泽宇,王佳豪. 基于改进UKF算法的移动机器人定位方法研究. 计算机应用研究. 2022(11): 3303-3308 .
    9. 李航,杨志强,刘迪,杨兵. 改进交互多模型的GNSS/航位推算列车组合定位算法. 测绘科学. 2022(11): 10-16+84 .
    10. 陈永刚,王妍,白邓宇,熊文祥. 基于LSTM网络辅助无迹粒子滤波的列车定位方法研究. 云南大学学报(自然科学版). 2021(03): 477-485 .
    11. 程建华,王诺,尚修能. 基于改进UKF的组合导航系统航向角估计方法研究. 导航定位与授时. 2020(03): 112-119 .

    Other cited types(22)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0702.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 37.5 %FULLTEXT: 37.5 %META: 60.9 %META: 60.9 %PDF: 1.6 %PDF: 1.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.5 %其他: 3.5 %Central District: 0.3 %Central District: 0.3 %China: 0.3 %China: 0.3 %Seattle: 0.3 %Seattle: 0.3 %上海: 0.5 %上海: 0.5 %临汾: 0.5 %临汾: 0.5 %北京: 4.3 %北京: 4.3 %哥伦布: 0.8 %哥伦布: 0.8 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 1.3 %天津: 1.3 %宣城: 0.3 %宣城: 0.3 %常州: 0.3 %常州: 0.3 %张家口: 2.4 %张家口: 2.4 %成都: 2.9 %成都: 2.9 %扬州: 0.3 %扬州: 0.3 %武汉: 0.3 %武汉: 0.3 %池州: 1.3 %池州: 1.3 %洛阳: 0.3 %洛阳: 0.3 %温州: 0.5 %温州: 0.5 %湘潭: 0.3 %湘潭: 0.3 %漯河: 2.9 %漯河: 2.9 %石家庄: 0.8 %石家庄: 0.8 %秦皇岛: 0.3 %秦皇岛: 0.3 %芒廷维尤: 11.0 %芒廷维尤: 11.0 %芝加哥: 0.5 %芝加哥: 0.5 %西宁: 59.0 %西宁: 59.0 %运城: 2.1 %运城: 2.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.5 %重庆: 0.5 %长沙: 1.1 %长沙: 1.1 %鹤壁: 0.3 %鹤壁: 0.3 %其他Central DistrictChinaSeattle上海临汾北京哥伦布嘉兴天津宣城常州张家口成都扬州武汉池州洛阳温州湘潭漯河石家庄秦皇岛芒廷维尤芝加哥西宁运城郑州重庆长沙鹤壁

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(474) PDF downloads(7) Cited by(33)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return