• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
JIA Hongyu, WU Weichang, YOU Gang, YANG Lei, PENG Qihui, ZHENG Shixiong. Damage Analysis of Long-Span Continuous Beam Bridges Under Strong Earthquakes[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1423-1431. doi: 10.3969/j.issn.0258-2724.20220072
Citation: JIA Hongyu, WU Weichang, YOU Gang, YANG Lei, PENG Qihui, ZHENG Shixiong. Damage Analysis of Long-Span Continuous Beam Bridges Under Strong Earthquakes[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1423-1431. doi: 10.3969/j.issn.0258-2724.20220072

Damage Analysis of Long-Span Continuous Beam Bridges Under Strong Earthquakes

doi: 10.3969/j.issn.0258-2724.20220072
  • Received Date: 24 Jan 2022
  • Rev Recd Date: 27 Mar 2022
  • Available Online: 13 Sep 2023
  • Publish Date: 21 Apr 2022
  • The continuous beam bridge is often damaged or even collapses due to the earthquake and thus loses its traffic function. Therefore, it is important to study the damage mechanism of large-span continuous beam bridges under strong earthquakes to improve the bridge collapse resistance. Based on the finite element software ANSYS/LS-DYNA, a three-dimensional numerical model of the damage of a large-span continuous beam bridge under strong earthquakes was established, which considered the material nonlinearity of the bridge pier, the large deformation nonlinearity of the damage process, and the nonlinear collision of the beam end. In addition, nonlinear analysis was performed to visually simulate the damage process of the large-span continuous beam bridge under strong earthquakes. The seismic damage of the large-span continuous beam bridge was analyzed in terms of strain and displacement response, pier damage, and girder-platform collision. The study results show that the damage modes of the one-way ground motion input and two-way ground motion input are basically the same, and the damage mode is determined by the bridge structure, and the ground motion input mode has less influence; the seismic damage of the large-span continuous beam bridge involves a gradual development process; the concrete damage factor of the bridge pier accumulates to 0.99; the bending plastic damage occurs at the bottom of the fixed pier, and the bridge is damaged.

     

  • [1]
    游四方,郑史雄,贾宏宇,等. 地震作用下简支梁桥纵向碰撞模拟[J]. 铁道标准设计,2020,64(12): 59-66.

    YOU Sifang, ZHENG Shixiong, JIA Hongyu, et al. Longitudinal colliding simulation of simply supported beam bridges under ground motions[J]. Railway Standard Design, 2020, 64(12): 59-66.
    [2]
    刘磊,赵东升,朱瑜,等. 1993—2017年我国大陆地震灾害损失的时空特征[J]. 自然灾害学报,2021,30(3): 14-23.

    LIU Lei, ZHAO Dongsheng, ZHU Yu, et al. Spatiotemporal characteristics of earthquake hazard losses in mainland China during 1993−2017[J]. Journal of Natural Disasters, 2021, 30(3): 14-23.
    [3]
    HAO H, TANG E K C. Numerical simulation of a cable-stayed bridge response to blast loads, partⅡ: damage prediction and FRP strengthening[J]. Engineering Structures., 2010, 32(10): 3193-3205. doi: 10.1016/j.engstruct.2010.06.006
    [4]
    谢文,孙利民. 采用耗能辅助墩的超大跨斜拉桥顺桥向地震损伤控制[J]. 中南大学学报(自然科学版),2013,44(11): 4672-4681.

    XIE Wei, SUN Limin. Seismic damage control of long span cable-stayed bridges by supporting piers with energy dissipating in longitudinal direction[J]. Journal of Central South University (Science and Technology), 2013, 44(11): 4672-4681.
    [5]
    仇清良,仇步云. 强震作用下大跨度连续梁桥的倒塌破坏研究[J]. 工程抗震与加固改造,2014,36(1): 57-60,134.

    QIU Qingliang, QIU Buyun. Study on the collapse and failure of long-span continuous beam bridge under strong earthquake[J]. Earthquake Resistant Engineering and Retrofitting, 2014, 36(1): 57-60,134.
    [6]
    黎雅乐,宗周红,黄学漾,等. 强震下钢筋混凝土连续梁桥非线性动力响应分析[J]. 东南大学学报(自然科学版),2016,46(6): 1271-1277.

    LI Yale, ZONG Zhouhong, HUANG Xueyang, et al. Nonlinear dynamic response analysis of reinforced concrete continuous girder bridge under strong earthquake excitations[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(6): 1271-1277.
    [7]
    左烨,孙广俊,李鸿晶. 混凝土梁桥地震倒塌失效机制[J]. 南京工业大学学报(自然科学版),2018,40(3): 73-80,104.

    ZUO Ye, SUN Guangjun, LI Hongjing. Failure mechanism of concrete girder bridges collapse during earthquakes[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2018, 40(3): 73-80,104.
    [8]
    王学伟. 公铁两用斜拉桥强地震作用下的连续倒塌过程数值模拟[J]. 西南公路,2018,147(3): 143-148.
    [9]
    黎雅乐,宗周红,黄学漾,等. 基于倒塌分析的连续梁桥地震损伤评估方法[J]. 振动. 测试与诊断,2019,39(4): 867-874,911.

    LI Yale, ZONG Zhouhong, HUANG Xueyang, et al. Collapse analysis-based seismic damage evaluation of continuous girder bridge[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(4): 867-874,911.
    [10]
    陈敬一,杜修力,韩强,等. 摇摆双层桥梁地震反应及抗倒塌能力分析[J]. 工程力学,2020,37(10): 56-69.

    CHEN Jingyi, DU Xiuli, HAN Qiang, et al. Analysis of seismic response and overturning resistance of rocking double-deck bridge system[J]. Engineering Mechanics, 2020, 37(10): 56-69.
    [11]
    周艳,张雷明,刘西拉. 美国Cypress高架桥地震倒塌的仿真分析[J]. 岩石力学与工程学报,2005,24(17): 3035-3044.

    ZHOU Yan, ZHANG Leiming, LIU Xila. Collapse simulation and analysis of Cypress viaduct during Loma Prieta earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3035-3044.
    [12]
    徐俊祥,刘西拉. 地裂时桥梁倒塌过程研究[J]. 中国铁道科学,2008,29(1): 17-21.

    XU Junxiang, LIU Xila. Study on bridge collapse resulting from fault rupture[J]. China Railway Science, 2008, 29(1): 17-21.
    [13]
    JOHNSON N, RANF R T, SAIIDI M S, et al. Seismic testing of a two-span reinforced concrete bridge[J]. Journal of Bridge Engineering, 2008, 13(2): 173-182. doi: 10.1061/(ASCE)1084-0702(2008)13:2(173)
    [14]
    MURRAY Y D, LEWIS B A. Numerical simulation of damage in concrete[R]. Colorado Springs: APTEK, Inc., 1995.
    [15]
    SIMO J C, JU J W. Strain-and stress-based continuum damage models—I. formulation[J]. International Journal of Solids and Structures, 1987, 23(7): 821-840. doi: 10.1016/0020-7683(87)90083-7
    [16]
    MURRAY Y D. Users manual for LS-DYNA concrete material model 159, FHWA-HRT-05-062[R]. Colorado Springs: APTEK, Inc., 2007.
    [17]
    BRUGGI M. Generating strut-and-tie patterns for reinforced concrete structures using topology optimization[J]. Computers & Structures, 2009, 87(23/24): 1483-1495.
    [18]
    Livermore Software Technology Corporation. LS-DYNA theory manual[M]. Livermore: Livermore Software Technology Corporation, 2019.
    [19]
    张沧海. 大跨度桥梁多向多点激励地震反应分析[D]. 哈尔滨: 中国地震局工程力学研究所, 2011.
    [20]
    MUTHUKUMAR S, DESROCHES R. A Hertz contact model with non-linear damping for pounding simulation[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(7): 811-828.
  • Relative Articles

    [1]PENG Yipu, TANG Zhiyuan, CHEN Li, LI Jian, LI Zichao. Fatigue Damage of Tied-Arch Bridge Hangers Based on Train-Bridge Coupling[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230450
    [2]GONG Wanting, QIAN Yongjiu, XU Wangxi. Seismic Damage Model of RC Pier Repaired with CFRP Considering Initial Damage[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 332-342. doi: 10.3969/j.issn.0258-2724.20220176
    [3]WANG Yawei, ZHU Jin, ZHENG Kaifeng, SU Yonghua, GUO Hui, LI Yongle. Coupled Vibration Analysis of Earthquake-Wind-Vehicle-Bridge for Long-Span Bridges Considering Scouring Effect[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 323-331. doi: 10.3969/j.issn.0258-2724.20220091
    [4]LEI Hujun, HUANG Jiangze. Seismic Responses Analysis of Train-Track-Bridge System Considering Pile-Soil Interaction[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 229-237. doi: 10.3969/j.issn.0258-2724.20190694
    [5]LI Xiaozhen, YANG Dehai, LEI Kangning, XIAO Lin, DAI Shengyong. Seismic Response of Continuous Beam-Arch Bridge under Spatially Varying Ground Motions[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 221-228. doi: 10.3969/j.issn.0258-2724.20190400
    [6]WANG Jun, LIN Guojin, TANG Xie, XU Guowen, TANG Rui. Failure Characteristics and Engineering Application of Layered Rock with Two Pre-existing Non-coplanar Fissures[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 719-725, 732. doi: 10.3969/j.issn.0258-2724.20180044
    [7]LI Xiaozhen, LIU Ming, YANG Dehai, DAI Shengyong, XIAO Lin. Seismic Damage Evolution Simulation of Long-Span Deck Steel Truss Arch Bridge[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1207-1214, 1223. doi: 10.3969/j.issn.0258-2724.20180665
    [8]ZHENG Shixiong, CHEN Zhiqiang, CHEN Zhiwei, LI Xi. Seismic Response Analysis of High-Pier Bridge under Near-Fault Multiple Pulse Record Excitation[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 897-907. doi: 10.3969/j.issn.0258-2724.20170725
    [9]ZHANG Ming, ZHOU Guangchun, ZHANG Keyue, JIA Hongyu, LI Lanping, ZHANG Deyi. Energy-Based Analysis of Anti-Seismic Performance of Latticed Shell in Coordination[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 234-243. doi: 10.3969/j.issn.0258-2724.2018.02.003
    [10]SU Chengguang, LIU Dan, CAO Shihao, ZHAO Pingrui, LIU Xueyi. Analysis of Static and Dynamic Flexural Failure Mode of Double-Layer Concrete Composite Beam[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 731-737. doi: 10.3969/j.issn.0258-2724.2017.04.011
    [11]WANG Shao-Lin, ZHAI Wan-Meng. Dynamic Responses of High-Speed Train-Track-Bridge System under Seismic Excitations[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 56-63. doi: 10.3969/j.issn.0258-2724.2011.01.009
    [12]LI Ming, 2, XIE Lili, 3, YANG Yongqiang, HU Jinjun. Potential Damage Analysis of Near-Fault Ground Motion Based on Response Spectra[J]. Journal of Southwest Jiaotong University, 2010, 23(3): 331-335. doi: 10. 3969/ j. issn. 0258-2724.
    [13]WANG Jian, YAO Lingkan, JIANG Liangwei. Seismic Deformation and Failure Modes and Mechanism of Soil Mass[J]. Journal of Southwest Jiaotong University, 2010, 23(2): 196-202. doi: 10. 3969/ j. issn. 0258-2724.
    [14]CUI Shengai, ZHU Bing. Coupling Vibration Simulation of Long-Span Continuous Beam Bridge on Passenger Dedicated Railway[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 66-71.
    [15]ZHANG Fang, QIAN Yongjiu, TANG Jishun. Performance-Based Damage Analysis for PC Continuous Rigid Frame Bridges[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 817-822.
    [16]LUO Yongfeng, LIU Huijuan, HAN Qinghua. Analysis Method of Dynamic Stability of Suspended-Dome Structures[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 729-735.
    [17]SHI Weixing, WANG Yang, LIU Chengqing. Damage Analysis of High-Rise Building under Seismic Load Based on Frequency Measurement[J]. Journal of Southwest Jiaotong University, 2007, 20(4): 389-394.
    [18]YUJian-hua, WEI Yong-tao, CAOJian-mian. Analysis of Seismic Dynamic Response ofHydraulic Turbines under WaterMedium[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 27-32.
    [19]Gao Fangqing, Wang Fengqin. Damage Detection of Steel Truss Bridge from Changes in Modes of Vibration[J]. Journal of Southwest Jiaotong University, 1999, 12(2): 158-162.
  • Cited by

    Periodical cited type(3)

    1. 高营,郑亮,王万月. 基于柔度法纤维梁柱单元的钢筋混凝土柱地震损伤分析. 科学技术与工程. 2025(02): 721-728 .
    2. 刘尊稳,梁刚毅,陈兴冲,邓永杰,李欣婧. 高烈度地震区高铁多跨简支梁桥纵向倒塌模式研究. 振动工程学报. 2025(03): 579-586 .
    3. 刘德林,余沛. 大跨度连续梁桥悬臂施工预拱度影响因素分析. 广东交通职业技术学院学报. 2024(04): 49-53+78 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.3 %FULLTEXT: 20.3 %META: 69.9 %META: 69.9 %PDF: 9.8 %PDF: 9.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.3 %其他: 13.3 %其他: 0.3 %其他: 0.3 %Absecon: 0.3 %Absecon: 0.3 %上海: 2.2 %上海: 2.2 %东莞: 0.2 %东莞: 0.2 %临汾: 0.2 %临汾: 0.2 %乌兰察布: 0.3 %乌兰察布: 0.3 %佛山: 0.2 %佛山: 0.2 %保定: 0.2 %保定: 0.2 %兰州: 0.5 %兰州: 0.5 %凉山: 0.2 %凉山: 0.2 %北京: 8.4 %北京: 8.4 %十堰: 0.6 %十堰: 0.6 %华盛顿州: 0.2 %华盛顿州: 0.2 %南京: 1.6 %南京: 1.6 %南宁: 0.3 %南宁: 0.3 %南昌: 0.5 %南昌: 0.5 %厦门: 0.3 %厦门: 0.3 %合肥: 0.5 %合肥: 0.5 %哥伦布: 0.6 %哥伦布: 0.6 %嘉兴: 0.2 %嘉兴: 0.2 %大庆: 0.3 %大庆: 0.3 %大连: 0.3 %大连: 0.3 %天津: 0.5 %天津: 0.5 %宣城: 0.9 %宣城: 0.9 %常州: 0.3 %常州: 0.3 %广州: 0.8 %广州: 0.8 %张家口: 2.5 %张家口: 2.5 %张掖: 0.2 %张掖: 0.2 %徐州: 0.2 %徐州: 0.2 %德阳: 0.2 %德阳: 0.2 %成都: 2.8 %成都: 2.8 %扬州: 0.6 %扬州: 0.6 %昆明: 0.6 %昆明: 0.6 %朝阳: 0.5 %朝阳: 0.5 %来宾: 0.2 %来宾: 0.2 %杭州: 0.9 %杭州: 0.9 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 1.2 %武汉: 1.2 %池州: 0.6 %池州: 0.6 %沈阳: 0.5 %沈阳: 0.5 %河池: 0.3 %河池: 0.3 %洛阳: 0.5 %洛阳: 0.5 %济南: 0.3 %济南: 0.3 %淄博: 0.3 %淄博: 0.3 %深圳: 0.9 %深圳: 0.9 %温州: 0.9 %温州: 0.9 %湘潭: 0.2 %湘潭: 0.2 %漯河: 4.4 %漯河: 4.4 %烟台: 0.2 %烟台: 0.2 %石家庄: 6.7 %石家庄: 6.7 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.2 %秦皇岛: 0.2 %绵阳: 0.8 %绵阳: 0.8 %芒廷维尤: 9.7 %芒廷维尤: 9.7 %芝加哥: 1.1 %芝加哥: 1.1 %衡阳: 0.3 %衡阳: 0.3 %西宁: 17.0 %西宁: 17.0 %西雅图: 0.3 %西雅图: 0.3 %诺沃克: 1.2 %诺沃克: 1.2 %贵阳: 1.2 %贵阳: 1.2 %达州: 0.2 %达州: 0.2 %运城: 0.8 %运城: 0.8 %郑州: 2.7 %郑州: 2.7 %重庆: 0.9 %重庆: 0.9 %长沙: 3.3 %长沙: 3.3 %阜新: 0.2 %阜新: 0.2 %青岛: 0.3 %青岛: 0.3 %其他其他Absecon上海东莞临汾乌兰察布佛山保定兰州凉山北京十堰华盛顿州南京南宁南昌厦门合肥哥伦布嘉兴大庆大连天津宣城常州广州张家口张掖徐州德阳成都扬州昆明朝阳来宾杭州格兰特县武汉池州沈阳河池洛阳济南淄博深圳温州湘潭漯河烟台石家庄福州秦皇岛绵阳芒廷维尤芝加哥衡阳西宁西雅图诺沃克贵阳达州运城郑州重庆长沙阜新青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article views(447) PDF downloads(63) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return