• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 55 Issue 5
Oct.  2020
Turn off MathJax
Article Contents
ZHENG Da, SU Hang, PANG Bo. Mechanical Characteristics Analysis of Toppling Deformation Based on Rheological Tests for Cantilever Beam[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1001-1008. doi: 10.3969/j.issn.0258-2724.20190478
Citation: ZHENG Da, SU Hang, PANG Bo. Mechanical Characteristics Analysis of Toppling Deformation Based on Rheological Tests for Cantilever Beam[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1001-1008. doi: 10.3969/j.issn.0258-2724.20190478

Mechanical Characteristics Analysis of Toppling Deformation Based on Rheological Tests for Cantilever Beam

doi: 10.3969/j.issn.0258-2724.20190478
  • Received Date: 29 May 2019
  • Rev Recd Date: 12 Dec 2019
  • Available Online: 24 Jan 2020
  • Publish Date: 01 Oct 2020
  • Curved toppling deformation is essentially the rock rheological deformation. In order to clarify its time-dependent characteristics and mechanical properties, the force analysis of anti-dip stratified slope is conducted, in which the force at a certain point of the rock layer is simplified as the gravity stress and horizontal stress. Then, the rheological tests of the bending cantilever beam are performed under this stress condition. The rheological model of the bending cantilever for rock strata is generalized as four stages: instantaneous deformation, attenuated creep, steady creep and accelerated creep. Based on the above tests and analysis, the constitutive equation for the rheological deformation of the bending cantilever beam is deduced. Through the calculation of the equation, assuming that the strain at the position of the ultimate toppling deformation of rock beam is zero lead to the ultimate depth of the toppling deformation. Given that as the beam breaks the strain acceleration is equal to the upper limit acceleration of the steady creep, the toppling fracture depth can be obtained.

     

  • loading
  • 王军. 黄河拉西瓦水电站坝前右岸果卜岸坡变形演化机制研究[D]. 成都: 成都理工大学, 2011.
    杨根兰,黄润秋,严明,等. 小湾水电站饮水沟大规模倾倒破坏现象的工程地质研究[J]. 工程地质学报,2006,14(2): 165-171. doi: 10.3969/j.issn.1004-9665.2006.02.004

    YANG Genlan, HUANG Runqiu, YAN Ming, et al. Engineering geological study on a large scale toppling deformation at Xiao Wan hydropower station[J]. Journal of Engineering Geology, 2006, 14(2): 165-171. doi: 10.3969/j.issn.1004-9665.2006.02.004
    余鹏程. 澜沧江苗尾水电站坝址区岩体倾倒变形特征及坝肩岩体稳定性分析[D]. 成都: 成都理工大学, 2007.
    谢莉. 澜沧江黄登水电站右坝肩2# 变形体成因控制条件及稳定性研究[D]. 成都: 成都理工大学, 2010.
    EVANS R S. Analysis of secondary toppling rock failures-the stress redistribution method[J]. Quarterly Journal of Engineering Geology, 1981, 14(2): 77-86. doi: 10.1144/GSL.QJEG.1981.014.02.01
    TENE S C, WEST T R. Some secondary toppling failure mechanisms in discontinuous rock slopes[C]//Proc. 24th US Symposium on Rock Mechanics. [S.l.]: Assoc of Engineering Geologists, 1983: 193-204
    陈红旗,黄润秋. 反倾层状边坡弯曲折断的应力及挠度判据[J]. 工程地质学报,2004,12(3): 243-246,273. doi: 10.3969/j.issn.1004-9665.2004.03.004

    CHEN Hongqi, HUANG Runqiu. Stress and flexibility criteria of bending and breaking in a countertendency layered slope[J]. Journal of Engineering Geology, 2004, 12(3): 243-246,273. doi: 10.3969/j.issn.1004-9665.2004.03.004
    张以晨, 佴磊, 沈世伟, 等. 反倾层状岩质边坡倾倒破坏力学模型[J]. 吉林大学学报(地球科学版), 2011, 41(增刊1): 207-213.

    ZHANG Yichen, ER Lei, SHEN Shiwei, et al. Mechanical models of anti-dip layered rock slope toppling failure[J]. Journal of Jilin University (Earth Science Section), 2011, 41(S1): 207-213.
    刘海军, 赵建军, 巨能攀. 岩质边坡倾倒破坏的力学分析[J]. 岩土力学, 2016, 37(增刊1): 289-294.

    LIU Haijun, ZHAO Jianjun, JU Nengpan. Mechanical analysis of toppling failure of rock slope[J]. Rock and Soil Mechanics 2016, 37(S1): 289-294.
    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    HUANG Runqiu. Large-scale landslides and their mechanism in China since the 20th century[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
    庞波,郑达,黄鹏. 基于流变模型的反倾层状岩体倾倒变形发育深度的力学分析[J]. 科学技术与工程,2016(18): 129-134. doi: 10.3969/j.issn.1671-1815.2016.18.023

    PANG Bo, ZHENG Da, HUANG Peng. Geological model analysis on the depth of toppling deformation in the anti-dip rock slopes[J]. Science Technology and Engineering, 2016(18): 129-134. doi: 10.3969/j.issn.1671-1815.2016.18.023
    王剑梅. 反倾层状岩体倾倒变形的力学机制分析及其早期识别指标体系研究[D]. 成都: 成都理工大学, 2015
    范庆忠,高延法. 分级加载条件下岩石流变特性的试验研究[J]. 岩土工程学报,2005(11): 38-41. doi: 10.3969/j.issn.1000-7598.2005.05.004

    FAN Qingzhong, GAO Yanfa. Experimental study on creep properties of rocks under stepwise loading[J]. Chinese Journal of Geotechnical Engineering, 2005(11): 38-41. doi: 10.3969/j.issn.1000-7598.2005.05.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views(592) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return