• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 54 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
ZHAI Donghai, HOU Jialin, LIU Yue. Parallel Algorithms for Text Sentiment Analysis Based on Deep Learning[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 647-654. doi: 10.3969/j.issn.0258-2724.20160948
Citation: ZHAI Donghai, HOU Jialin, LIU Yue. Parallel Algorithms for Text Sentiment Analysis Based on Deep Learning[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 647-654. doi: 10.3969/j.issn.0258-2724.20160948

Parallel Algorithms for Text Sentiment Analysis Based on Deep Learning

doi: 10.3969/j.issn.0258-2724.20160948
  • Received Date: 26 Nov 2016
  • Rev Recd Date: 27 Nov 2018
  • Available Online: 11 Jan 2019
  • Publish Date: 01 Jun 2019
  • In the case of big training set and test set, based on semi-supervised auto encoder (Semi-Supervised RAE), the text sentiment analysis algorithm is accompanied by slow training rate and output rate of test results. To solve these problems, the corresponding parallel algorithms are proposed in this paper. For the big training data set, the method of " separate operation” is adopted to divide the data set into blocks. Each data block is inputted into Map nodes to calculate its error, and the errors of all data blocks are stored in the buffer. The block errors are read by Reduce nodes from the buffer to calculate the optimization objective function. Then, the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm is called to update the parameter set, and the updated parameter set is reloaded into the cluster. The above process is iterated until the optimization objective function converges; therefore, an optimal parameter set is obtained. For the big test data set, the parameter set obtained by the above steps is used to initialize the cluster. The vector representation of each sentence is calculated in Map nodes and temporarily stored in the buffer. Then, the sentiment label of each sentence is calculated by the classifier in the Reduce node using the vector representation. The experimental results demonstrate that in the standard MR (movie review) corpus, the accuracy of the algorithm is 77.0%, which is almost the same as the accuracy of the original algorithm (77.3%), at the same time the training time is decreased greatly along with the increase of compute nodes in the massive training data sets.

     

  • loading
  • LIU Bing. Sentiment analysis and opinion mining[M]. San Rafael: Morgan & Claypool, 2012: 1-6
    唐慧丰,谭松波,程学旗. 基于监督学习的中文情感分类技术比较研究[J]. 中文信息学报,2007,6(2): 88-94.

    TANG Huifeng, TAN Songbo, CHENG Xueqi. Research on sentiment classification of chinese reviews based on supervised machine learning techniques[J]. Journal of Chinese Information Processing, 2007, 6(2): 88-94.
    梁军,柴玉梅,原慧斌,等. 基于深度学习的微博情感分析[J]. 中文信息学报,2014,28(5): 155-161. doi: 10.3969/j.issn.1003-0077.2014.05.019

    LIANG Jun, CHAI Yumei, YUAN Huibin, et al. Deep learning for Chinese micro-blog sentiment analysis[J]. Journal of Chinese Information Processing, 2014, 28(5): 155-161. doi: 10.3969/j.issn.1003-0077.2014.05.019
    杨经,林世平. 基于SVM的文本词句情感分析[J]. 计算机应用与软件,2011,28(9): 225-228. doi: 10.3969/j.issn.1000-386X.2011.09.068

    YANG Jing, LIN Shiping. Emotion analysis on text words and sentences based on SVM[J]. Computer Applications and Software, 2011, 28(9): 225-228. doi: 10.3969/j.issn.1000-386X.2011.09.068
    HINTON G E, SALAKHUTDINOV R R. Reducing the dimensio-nality of data with neural networks[J]. Science, 2006, 28(7): 504-507.
    HINTON G E, OSINDERO S A. Fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527
    KIM Y. Convolutional neural networks for sentence classification[J]. Eprint Arxiv, 2014: 1746-1751.
    黄磊,杜昌顺. 基于递归神经网络的文本分类研究[J]. 北京化工大学学报(自然科学版),2017,44(1): 99-104.

    HUANG Lei, DU Changshun. Application of recurrent neural networks in text classification[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2017, 44(1): 99-104.
    SOCHER R, PENNINGTON J, HUANG E H, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Edinburgh: John McIntyre Conference Centre, 2011: 151-161
    SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju Island: Stanford Press Release, 2012: 1201-1211
    SOCHER R, PERELYGIN A, WU J Y, et al. Recursive deep models for semantic compos-itionality over a sentiment treebank[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Seattle: Stanford Press Release, 2013: 1631-1642
    DEAN J, CORRADO G S, MONGA R, et al. Large scale distributed deep networks[C]//Advances in Neural Information Processing. Vancouver: Curran Associates Inc., 2012: 1232-1240
    RAINA R, MADHAVAN A, NG A. Large-scale deep unsupervised learning using graphics processors[C]//Proceeding 26th Annual International Conference on Machine Learning, ICML. Montreal: ACM. 2009: 873-880
    温馨,罗侃,陈荣国. 基于Shark/Spark的分布式空间数据分析框架[J]. 地球信息科学学报,2015,17(4): 401-407.

    WEN Xin, LUO Kai, CHEN Rongguo. Distributed spatial data analysis framework based on Shark/Spark[J]. Journal of Geo-information Science, 2015, 17(4): 401-407.
    ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning[C]// Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. Savannah: Google Press. 2016: 265-283
    ISARD M, BUDIU M, YU Y, et al, Dryad: distributed data-parallel programs from sequential building blocks[C]//Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems. New York: ACM, 2007: 59-72
    DEAN J, GHEMAWAT S. Mapreduce:simp-lified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1): 107-113. doi: 10.1145/1327452
    侯佳林,王佳君,聂洪玉. 基于异常检测模型的异构环境下MapReduce性能优化[J]. 计算机应用,2015,35(9): 2476-2481.

    HOU Jialin, WANG Jiajun, NIE Hongyu. MapReduce performance optimization based on anomaly detection model in heterogeneous cloud environment[J]. Journal of Computer Applications, 2015, 35(9): 2476-2481.
    LIU Yang, YANG Jie, HUANG Yuang, et al. MapReduce based parallel neural networks in enabling large scale machine learning[J]. Computational Intelligence and Neuroscience, 2015, 2015(2): 1-13.
    SUN Kairan, WEI Xu, JIA Gengtao, et al. Large-scale artificial neural network: mapreduce-based deep learning[DB/OL]. [2015-10-09]. https://arxiv.org/pdf/1-510.02709.pdf
    ZHANG Kunlei, CHEN Xuewen. Large-scale deep belief nets with MapReduce[J]. IEEE Access, 2014, 2(2): 395-403.
    PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Philadelphia: Association for Computational Linguistics. 2002: 79-86
    李然. 基于深度学习的短文本情感倾向性研究[D]. 北京: 北京理工大学, 2015
    朱少杰. 基于深度学习的文本情感分类研究[D]. 哈尔滨: 哈尔滨工业大学, 2014
    PANG Bo, LEE L. Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales[C]//Proceeding ACL’05 Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Michigan: Association for Computational Linguistics, 2005: 115-124
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views(412) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return