• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
CHEN Weirong, WANG Xuan, LI Qi. Parallel Interaction Influence of Single-Stage Photovoltaic Grid-Connected Multi-Inverter System[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 811-819. doi: 10.3969/j.issn.0258-2724.20180900
Citation: CHEN Weirong, WANG Xuan, LI Qi. Parallel Interaction Influence of Single-Stage Photovoltaic Grid-Connected Multi-Inverter System[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 811-819. doi: 10.3969/j.issn.0258-2724.20180900

Parallel Interaction Influence of Single-Stage Photovoltaic Grid-Connected Multi-Inverter System

doi: 10.3969/j.issn.0258-2724.20180900
  • Received Date: 12 Nov 2018
  • Rev Recd Date: 22 May 2019
  • Available Online: 06 Mar 2020
  • Publish Date: 01 Aug 2020
  • Under the condition of weak grid, the dynamic interactions between multi-inverters and between multi-inverters and the grid affect the power quality and stability of the power system, which is likely to cause harmonic resonance. In order to study the harmonic resonance characteristics of the single-stage photovoltaic grid-connected multi-inverter system, the modal analysis method is used for systematical analysis and discussion on the resonance problem while the interaction between the photovoltaic generation and the system is considered. Firstly, according to the structure and control strategy of three-phase single-stage photovoltaic grid-connected system, the Thevenin equivalent model for the multi-inverter system is established. Secondly, a modal analysis method is applied, which can determine the system resonance frequency, resonance center and the participation degree of each node by constructing node admittance matrix of the multi-inverter system. The resonance characteristics and variation laws of the system are studied from three aspects: the number of inverters, external environment and transmission distance. Finally, with the use of MATLAB/Simulink simulation platform, the correctness and effectiveness of the modal analysis method are validated by a simulation model of a three-phase single-stage photovoltaic grid-connected multi-inverter system. The results show that when the number of inverters increases, the low resonance frequency tends to decrease, which is 30th, 27th, and 25th harmonics respectively, while the high resonance frequency remains unchanged at 2 230 Hz. When the ambient temperature decreases, the low resonance frequency increases gradually, which is 22th, 23th, and 24th harmonics respectively, and the high resonance frequency is stable at about 2 225 Hz. When the transmission distance increases, the low and high resonance frequencies gradually decrease and become close to each other.

     

  • JALILI K, BERNET S. Design of LCL filters of active-front-end two level voltage-source converters[J]. IEEE Trans on Industrial Electronics, 2009, 56(5): 1674-1689. doi: 10.1109/TIE.2008.2011251
    丁明,王伟胜,王秀丽,等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报,2014,34(1): 1-14.

    DING Ming, WANG Weisheng, WANG Xiuli, et al. A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14.
    刘怀远,徐殿国,武健,等. 并网换流器系统谐振的分析、检测与消除[J]. 中国电机工程学报,2016,36(4): 1061-1074.

    LIU Huaiyuan, XU Dianguo, WU Jian, et al. Analysis,detection and mitigation of resonance in grid-connected converter systems[J]. Proceedings of the CSEE, 2016, 36(4): 1061-1074.
    张兴,余畅舟,刘芳,等. 光伏并网多逆变器并联建模及谐振分析[J]. 中国电机工程学报,2014,34(3): 336-345.

    ZHANG Xing, YU Changzhou, LIU Fang, et al. Modeling and resonance analysis of multi-paralleled grid-tied inverters in PV systems[J]. Proceedings of the CSEE, 2014, 34(3): 336-345.
    王振浩,孙玮澳,孙福军. 光伏系统并网的多逆变器并联交互影响分析[J]. 电力电子技术,2017,51(2): 29-32.

    WANG Zhenhao, SUN Weiao, SUN Fujun. Interaction analysis of multiple paralleled inverters in photovoltaic system[J]. Power Electronics, 2017, 51(2): 29-32.
    唐振东,杨洪耕,袁林. 弱电网下多逆变器并网控制通道间的交互影响分析[J]. 电网技术,2016,40(11): 3524-3531.

    TANG Zhendong, YANG Honggeng, YUAN Lin. Analysis on interactive influences among control loops of multi inverters connected to weak-structured power system[J]. Power System Technology, 2016, 40(11): 3524-3531.
    胡伟,孙建军,马谦,等. 多个并网逆变器间的交互影响分析[J]. 电网技术,2014,38(9): 2511-2518.

    HU Wei, SUN Jianjun, MA Qian, et al. Analysis on interactive influences among multi grid-connected inverters[J]. Power System Technology, 2014, 38(9): 2511-2518.
    HE J. Investigation and active damping of multiple resonances in a parallel-inverter-based microgrid[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 234-246. doi: 10.1109/TPEL.2012.2195032
    严干贵,常青云,黄亚峰,等. 弱电网接入下多光伏逆变器并联运行特性分析[J]. 电网技术,2014,38(4): 933-940.

    YAN Gangui, CHANG Qingyun, HUANG Yafeng, et al. Analysis on parallel operational characteristics of multi photovoltaic inverters connected to weak-structured power system[J]. Power System Technology, 2014, 38(4): 933-940.
    许德志,汪飞,毛华龙,等. 多并网逆变器与电网的谐波交互建模与分析[J]. 中国电机工程学报,2013,33(12): 64-71,187.

    XU Dezhi, WANG Fei, MAO Hualong, et al. Modeling and analysis of harmonic interaction between multiple grid-connected inverters and the utility grid[J]. Proceedings of the CSEE, 2013, 33(12): 64-71,187.
    孙振奥,杨子龙,王一波,等. 光伏并网逆变器集群的谐振原因及其抑制方法[J]. 中国电机工程学报,2015,35(2): 418-425.

    SUN Zhenao, YANG Zilong, WANG Yibo, et al. The cause analysis and suppression method of resonances in clustered grid-connected photovoltaic inverters[J]. Proceedings of the CSEE, 2015, 35(2): 418-425.
    XU W, HUANG Z Y, CUI Y, et al. Harmonic resonance mode analysis[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1182-1190. doi: 10.1109/TPWRD.2004.834856
    仰彩霞, 刘开培, 李建奇, 等. 谐波谐振模态灵敏度分析[J]. 电工技术学报, 2011, 26(增刊1): 207-212.

    YANG Caixia, LIU Kaipei, LI Jianqi, et al. Modal sensitivity analysis for harmonic resonance[J]. Transac-tions of China Electrotechnical Society, 2011, 26(S1): 207-212.
    孙东,姚玉洁,刘玉林,等. 配电网谐波谐振改进模态分析方法的研究[J]. 电力电容器与无功补偿,2017,38(2): 105-110.

    SUN Dong, YAO Yujie, LIU Yulin, et al. Study on improved mode analysis method of harmonic resonance in distribution grid[J]. Power Capacitor & Reactive Power Compensation, 2017, 38(2): 105-110.
    艾欣,雷之力,崔明勇. 微电网谐波谐振的模态检测法研究[J]. 中国电机工程学报,2009,29(增刊1): 55-60.

    AI Xin, LEI Zhili, CUI Mingyong. Study on modal survey method of the harmonic resonance in micro-grid[J]. Proceedings of the CSEE, 2009, 29(S1): 55-60.
    谈萌,彭祥华,王同勋,等. 基于模态分析的半波长交流输电系统与风电场并网谐振研究[J]. 高电压技术,2018,44(1): 90-98.

    TAN Meng, PENG Xianghua, WANG Tongxun, et al. Study on the harmonic resonance of grid-connected of wind farms and half-wavelength AC transmission system based on modal analysis method[J]. High Voltage Engineering,Electric Power Automation Equipment, 2018, 44(1): 90-98.
    唐振东,杨洪耕. 基于模态分析的风电场并网谐波谐振研究[J]. 电力自动化设备,2017,37(3): 87-92,99.

    TANG Zhendong, YANG Honggeng. Research on wind farm harmonic resonance based on modal analysis[J]. Electric Power Automation Equipment, 2017, 37(3): 87-92,99.
  • Relative Articles

    [1]ZHOU Guohua, XUE Ning, BI Qiang. Improved and Fast Global Maximum Power Point Tracking Algorithm of Photovoltaic Power Generation System[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1266-1274. doi: 10.3969/j.issn.0258-2724.20220863
    [2]CHEN Siyuan, ZHANG Yukun, ZHANG Qianning, ZHENG Jie. Emergy Analysis Based Method for Site Selection of Photovoltaic Plants[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 447-455, 476. doi: 10.3969/j.issn.0258-2724.20210368
    [3]YIN Zihong, ZENG Yi, WEI Honglin, YIN Zhi, GAO Jingjing. Time-Frequency Characteristics of Vibration Acceleration of High-Speed Railway Subgrade Under Ejection Impact Load[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 219-226. doi: 10.3969/j.issn.0258-2724.20211034
    [4]ZHANG Jing, LIU Jinzeng, LIU Zhigang, CHU Wenping. Mechanical Characteristics of High-Speed Railway Catenary Cantilever System[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 347-353. doi: 10.3969/j.issn.0258-2724.20190040
    [5]CAO Lilin, CAO Dong, YU Guojun. Two Simplified Models for Human-Structure Vertical Interaction[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1166-1172. doi: 10.3969/j.issn.0258-2724.2018.06.011
    [6]YANG Kai, ZHANG Zhuhong. Single-Objective Multi-modal Expected Value Programming Based on Immune Optimization[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1061-1067. doi: 10.3969/j.issn.0258-2724.2014.06.018
    [7]WANG Bin, JIANG Xiaofeng, GAO Shibin, QIU Zhongcai. Series Resonance Analysis Based on Branch-Circuit Method[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 1021-1026. doi: 10.3969/j.issn.0258-2724.2012.06.018
    [8]GE Xinglai, FENG Xiaoyun. SVPWM Control of Three Level Inverter for Traction Drive in EMUs[J]. Journal of Southwest Jiaotong University, 2008, 21(5): 566-572.
    [9]CAO Taiqiang, XU Jianping, XU Shungang. Freewheeling Current and Suppression in Inverter of Stand-Alone Photovoltaic Lighting System[J]. Journal of Southwest Jiaotong University, 2008, 21(4): 504-508.
    [10]ZHENG Jia-shu, YUZhi-xiang. Analysis of Modal Properties of Cable-Net Structures[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 58-63.
    [11]GAO Feng, GUAN Bao-shu, QIU Wen-ge, WANG Ming-nian, LI Cheng-hui. Dynamic Responses of Overlapping Tunnels to Passing Trains[J]. Journal of Southwest Jiaotong University, 2003, 16(1): 38-42.
    [12]DUGui-ping, HUANG Shi-sheng, WANG Zhen-min. A Novel Zero-Voltage Soft-Switching Arc Welding Inverter Based on Peak-Current Mode[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 277-280.
    [13]TANGHuai-ping, WANG Feng-qin. Self-Vibration Characteristic Test of Long-Span Bridges by Means of Environment Random Excitation[J]. Journal of Southwest Jiaotong University, 2000, 13(2): 126-128.
    [14]Gao Fangqing, Wang Fengqin. Damage Detection of Steel Truss Bridge from Changes in Modes of Vibration[J]. Journal of Southwest Jiaotong University, 1999, 12(2): 158-162.
  • Cited by

    Periodical cited type(3)

    1. 尚扬,王永生,魏超,黄海宏. 并网逆变器并联运行谐振分析及抑制策略. 电器与能效管理技术. 2023(06): 18-22 .
    2. 赵一霖,蒋晓艳,臧堃,谭景洋,焦乾致. 光伏发电并网中谐波特性分析及谐波抑制综述. 电工技术. 2022(02): 23-28 .
    3. 张思源,张建南,马桢,张玄哲,冯勇,李志前. 光伏并网系统的谐波谐振评估与安全防控. 电力与能源. 2021(04): 441-446 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 64.5 %FULLTEXT: 64.5 %META: 33.1 %META: 33.1 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %China: 1.7 %China: 1.7 %上海: 2.5 %上海: 2.5 %东莞: 0.8 %东莞: 0.8 %临汾: 0.2 %临汾: 0.2 %北京: 10.7 %北京: 10.7 %十堰: 0.2 %十堰: 0.2 %华盛顿州: 0.1 %华盛顿州: 0.1 %南京: 1.0 %南京: 1.0 %南通: 0.1 %南通: 0.1 %合肥: 0.2 %合肥: 0.2 %吉林: 0.1 %吉林: 0.1 %哥伦布: 0.2 %哥伦布: 0.2 %唐山: 0.2 %唐山: 0.2 %商丘: 0.2 %商丘: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.8 %天津: 0.8 %宣城: 0.1 %宣城: 0.1 %常州: 0.2 %常州: 0.2 %广元: 0.2 %广元: 0.2 %张家口: 1.7 %张家口: 1.7 %成都: 2.5 %成都: 2.5 %扬州: 0.4 %扬州: 0.4 %无锡: 0.1 %无锡: 0.1 %昆明: 0.4 %昆明: 0.4 %杭州: 0.6 %杭州: 0.6 %榆林: 0.4 %榆林: 0.4 %池州: 0.4 %池州: 0.4 %沈阳: 1.3 %沈阳: 1.3 %洛阳: 0.4 %洛阳: 0.4 %济南: 0.5 %济南: 0.5 %深圳: 0.8 %深圳: 0.8 %漯河: 0.8 %漯河: 0.8 %焦作: 0.1 %焦作: 0.1 %石家庄: 1.1 %石家庄: 1.1 %芒廷维尤: 11.2 %芒廷维尤: 11.2 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.7 %苏州: 0.7 %西宁: 45.6 %西宁: 45.6 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.6 %运城: 0.6 %郑州: 0.8 %郑州: 0.8 %长沙: 3.2 %长沙: 3.2 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.8 %青岛: 0.8 %香港: 0.1 %香港: 0.1 %其他China上海东莞临汾北京十堰华盛顿州南京南通合肥吉林哥伦布唐山商丘嘉兴大连天津宣城常州广元张家口成都扬州无锡昆明杭州榆林池州沈阳洛阳济南深圳漯河焦作石家庄芒廷维尤芜湖芝加哥苏州西宁贵阳运城郑州长沙阳泉青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views(704) PDF downloads(25) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return