• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
JIANG Shenghua, YAO Guowen, LIU Chaoyue, LIU Xiaochun. Flexural Behavior of Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer under Hydrothermal Environment[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 175-183. doi: 10.3969/j.issn.0258-2724.20170893
Citation: JIANG Shenghua, YAO Guowen, LIU Chaoyue, LIU Xiaochun. Flexural Behavior of Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer under Hydrothermal Environment[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 175-183. doi: 10.3969/j.issn.0258-2724.20170893

Flexural Behavior of Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer under Hydrothermal Environment

doi: 10.3969/j.issn.0258-2724.20170893
  • Received Date: 09 Feb 2018
  • Rev Recd Date: 23 May 2018
  • Available Online: 31 May 2018
  • Publish Date: 01 Feb 2020
  • To study the durability of concrete structure strengthened with CFRP(carbon fiber reinforced polymer) under hydrothermal environment, six concrete beams strengthened with CFRP under warm and moisture conditions were used for flexural behavior experiment; the failure mode, bearing capacity, deflection and crack were studied by the experiment. Based on differential equations of chemical reactions and exponential law of reaction rate for epoxy resin aging, the attenuation model of elastic modulus was given for epoxy resin under warm and moisture conditions. From the mechanical properties of concrete and epoxy resin, theoretical formula of CFRP peel strength was given for concrete beams strengthened with CFRP under hydrothermal environment, and the flexural capacity formula was also put forward. The results show that the flexural capacity of strengthened concrete beams decrease exposed to environmental conditions, and peeling failure of CFRP is gradually transferring from the interface region of concrete side to the interface region of CFRP side. As the environmental effect continues, the number of cracks and deflection reduce while the crack width increases, which show that both damage and brittleness of strengthened beam increases. The yield curvature, ultimate curvature and curvature ductility factor of the strengthened beam reduce, and it indicates that the ductility of the strengthened beam deteriorates, but the brittleness and dispersion of the CFRP peeling failure increase. The comparison between the experimental and theoretical analysis shows that the relative error of the theoretical and the experimental value is smaller than 20% for CFRP ultimate strain, and the relative error is smaller than 11% for flexural capacity.

     

  • 刘超越. 荷载/湿热环境作用下粘贴CFRP加固钢筋砼梁的耐久性研究[D]. 重庆: 重庆交通大学, 2016
    任慧韬,胡安妮,姚谦峰. 湿热环境对FRP加固混凝土结构耐久性能的影响[J]. 哈尔滨工业大学学报,2006,38(11): 1996-1999. doi: 10.3321/j.issn:0367-6234.2006.11.045

    REN Huitao, HU Anni, YAO Qianfeng. The influence of wet-thermal condition on durability behavior of concrete structures strengthened by FRP[J]. Journal of Harbin Institute of Technology, 2006, 38(11): 1996-1999. doi: 10.3321/j.issn:0367-6234.2006.11.045
    任慧韬,胡安妮,姚谦峰. 纤维增强聚合物加固混凝土结构耐久性能研究[J]. 大连理工大学学报,2005,45(6): 847-852. doi: 10.3321/j.issn:1000-8608.2005.06.015

    REN Huitao, HU Anni, YAO Qianfeng. Research on durability of concrete structures strengthened with FRP laminates[J]. Journal of Dalian University of Technology, 2005, 45(6): 847-852. doi: 10.3321/j.issn:1000-8608.2005.06.015
    AU C, BUYUKOZTURK O. Peel and shear fracture characterization of debonding in FRP plated concrete affected by moisture[J]. Journal of Composites for Construction, 2006, 10(1): 35-47. doi: 10.1061/(ASCE)1090-0268(2006)10:1(35)
    OUYANG Zhengyu, WAN Baolin. Nonlinear deterioration model for bond interfacial fracture energy of FRP-concrete joints in moist environments[J]. Journal of Composites for Construction, 2009, 13(1): 53-63. doi: 10.1061/(ASCE)1090-0268(2009)13:1(53)
    DAI J G, YOKOTA H, IWANAMI M, et al. Experimental investigation of the influence of moisture on the bond behavior of FRP to concrete interfaces[J]. Journal of Composites for Construction, 2010, 14(6): 834-844. doi: 10.1061/(ASCE)CC.1943-5614.0000142
    ZHANG Pu, WU Gang, ZHU Hong, et al. Mechanical performance of the wet-bond interface between FRP plates and cast-in-place concrete[J]. Journal of Composites for Construction, 2014, 18(6): 04014016-1-04014016-9. doi: 10.1061/(ASCE)CC.1943-5614.0000472
    STRATFORD T J, BISBY L A. Effect of warm temperatures on externally bonded FRP strengthening[J]. Journal of Composites for Construction, 2012, 16(3): 235-244. doi: 10.1061/(ASCE)CC.1943-5614.0000260
    JAIPURIAR A, FLOOD J P, BAKIS C E, et al. Glassy-rubbery transition behavior of epoxy resins used in FRP structural strengthening systems[C]//The 5th International Conference on FRP Composites in Civil Engineering. Berlin: Springer, 2011: 10-25.
    郑小红. 湿热环境下CFL-混凝土界面粘结-滑移机理研究[D]. 广州: 华南理工大学, 2014
    宋亮辉. 湿热环境下FRP-混凝土界面粘结性能的耐久性试验研究[D]. 广州: 广东工业大学, 2016
    BETONBAN. Fib model code for concrete structures: 2010 CEB-FIP[S]. Berlin: Wilhelm Ernst & Sohn, 2013
    BILOTTA A, FAELLA C, MARTINELLI E, et al. Indirect identification method of bilinear interface laws for FRP bonded on a concrete substrate[J]. Journal of Composites for Construction, 2012, 16(2): 171-184. doi: 10.1061/(ASCE)CC.1943-5614.0000253
    SHRESTHA J, UEDA T, ZHANG D. Durability of FRP concrete bonds and its constituent properties under the influence of moisture conditions[J]. Journal of Materials in Civil Engineering, 2015, 27(2): A4014009-1-A4014009-14.
    DAI J G, GAO W Y, TENG J G. Bond-slip model for FRP laminates externally bonded to concrete at elevated temperature[J]. Journal of Composites for Construction, 2013, 17(2): 217-228. doi: 10.1061/(ASCE)CC.1943-5614.0000337
    OBAIDAT Y T, HEYDEN S, DAHLBLOM O. Evaluation of parameters of bond action between FRP and concrete[J]. Journal of Composites for Construction, 2013, 17(5): 626-635. doi: 10.1061/(ASCE)CC.1943-5614.0000378
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011
    宋文娟. 玻纤增强环氧树脂复合材料耐海水腐蚀行为与寿命预测[D]. 哈尔滨: 哈尔滨工业大学, 2014
    苗蓉丽, 闫素云,殷胜昔,等. 两种环氧树脂灌封料使用寿命研究[J]. 航空兵器,2006(2): 53-55. doi: 10.3969/j.issn.1673-5048.2006.02.015

    MIAO Rongli, YAN Suyun, YIN Shengxi, et al. Study on the life of two kinds of epoxy resin[J]. Aero Weaponry, 2006(2): 53-55. doi: 10.3969/j.issn.1673-5048.2006.02.015
    吕小军,张琦,马兆庆,等. 湿热老化对碳纤维/环氧树脂基复合材料力学性能影响研究[J]. 材料工程,2005(11): 50-53. doi: 10.3969/j.issn.1001-4381.2005.11.014

    LÜ Xiaojun, ZHANG Qi, MA Zhaoqing, et al. Study of hydro thermal aging effect on mechanical properties of carbon fiber/epoxy resin composites[J]. Journal of Materials Engineering, 2005(11): 50-53. doi: 10.3969/j.issn.1001-4381.2005.11.014
    AYDIN H, GRAYINA R J, VISINTIN P. Durability of adhesively bonded FRP-to-concrete joints[J]. Journal of Composites for Construction, 2016, 20(5): 04016016-1-04016016-19.
    TOUTANJI H, HAN M, GHORBEL E. Interfacial bond strength characteristics of FRP and RC substrate[J]. Journal of Composites for Construction, 2015, 16(1): 35-46.
    TOUTANJI H, SAXENA P, ZHAO L, et al. Prediction of interfacial bond failure of FRP:concrete surface[J]. Journal of Composites for Construction, 2007, 11(4): 427-436. doi: 10.1061/(ASCE)1090-0268(2007)11:4(427)
    四川省住房和城乡建设厅. 混凝土结构加固设计规范: GB 50367—2013[S]. 北京: 中国建筑工业出版社, 2014
  • Relative Articles

    [1]ZHU He, YUAN Ming, GUO Xin. Finite Element Analysis on Layered Mechanical Properties of Carbon Fiber Wires Under Influence of Temperature[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 700-711. doi: 10.3969/j.issn.0258-2724.20210686
    [2]WU Huairui, YE Fen, XU Xiaolong. Microstructural Characteristics and Modification Mechanism of Inorganic Fine Particles in Buton Rock Asphalt[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 556-564. doi: 10.3969/j.issn.0258-2724.20180582
    [3]XU Jin, ZHAO Jun, LUO Qing, SHAO Yiming. Driving Speed Decision-Making on Complex Highways Based on Strategy of Trajectory-Speed Coupling[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 577-589. doi: 10.3969/j.issn.0258-2724.2015.04.002
    [4]WANG Yuanqing, ZONG Liang, ZHANG Longying, JIA Ruihua, SHI Gang. Simulation of Construction Process of Loukouni Bridge in the Republic of Congo[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 195-201. doi: 10.3969/j.issn.0258-2724.2014.02.002
    [5]CHEN Shuxian, WANG Yuantao, YANG Wenfeng, LI Meng, QIN Wenfeng, TANG Qingru. Analysis of Temperature Field of Resin Matrix Composite Patches during Curing Process[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 869-874. doi: 10.3969/j.issn.0258-2724.2014.05.020
    [6]WANG Yuhui, HE Guoqi. Causes Analysis of Tread Spalling Defects on Solid Rolled Wheels of SS3B and DF8B Locomotives[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 904-908. doi: 10.3969/j.issn.0258-2724.2013.05.019
    [7]WANG Xinjie, ZHANGJianqiang, GUOYuwen. Curing Kinetics of Nonmetallic Powder/Epoxy Resin Composites[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 518-522. doi: 10.3969/j.issn.0258-2724.2011.03.027
    [8]CHUge Ping, QIANG Shi-Zhong, HOU Su-Wei. Experimental Investigation of Wedge-Anchor Parameters for CFRP Tendons[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 514-520. doi: 10. 3969/ j. issn. 0258-2724.
    [9]XIAO Shanghui, LI Li. Analytical Model of Brillouin Scattering Spectrum Measurements in Fibre-Optic Distributed Sensing Systems[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 946-950.
    [10]YEXian-hui, YANG Yi-ren, LIUFei. Effects ofAsymmetricalParameters of Structure on StructuralFlutter Velocity[J]. Journal of Southwest Jiaotong University, 2005, 18(6): 779-783.
    [11]XULi, JIANGXiao-yu, QIAN Lin-mao. Experimental Investigation onM echanicalProperties of Nano-Al2O3Coating on ResinM atrix Composites[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 347-350.
    [12]WANG Wen-jian LIUQi-yue, . Experimental Investigation on Spalling ofRailway CarW heels[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 228-231.
    [13]AO Yin-hui, XUXiao-dong, WUNai-you. Defect Detecting of Train Wheelset Tread Surface with Laser Displacement Sensor[J]. Journal of Southwest Jiaotong University, 2004, 17(3): 345-348.
    [14]TONG Bing, ZHU Bing, ZHOU Ben-kuan. Numerical Simulation of Velocity Field of Flow Around Square Cylinder[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 121-124.
    [15]WANG Jun, YANG Fan, CHEN Da-peng. An Isotropic Viscoelastic Model Coupled with Hydrothermal Effects[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 642-646.
    [16]WANG Jun, YANG Fan, CHEN Da-peng. The Analysis of Delamination and Fracture in IC Packages[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 125-128.
    [17]ZOUBin, SHENRu, QILin-lin. Research on Stabilizing the Railway Roadbed with Improved Urea-Formaldehyde-Resin[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 33-36.
  • Cited by

    Periodical cited type(9)

    1. 赵怀轩,张启志. 湿热-碳化下环氧树脂混凝土的抗碳化性能试验研究. 粉煤灰综合利用. 2024(01): 28-31 .
    2. 夏桂然,魏敦涛,刘泽佳,周立成,刘逸平,汤立群. 基于深度学习的黏钢构件黏接层损伤识别方法. 实验力学. 2024(04): 399-412 .
    3. 易富,杨纪,马泽宇,殷雨时. 湿热酸雨环境对CFRP-混凝土界面剪切粘结性能影响. 复合材料学报. 2023(08): 4757-4767 .
    4. 刘海. 天然纤维/环氧树脂-混凝土的湿热老化强度模型研究. 合成材料老化与应用. 2022(04): 90-93 .
    5. 姚国文,刘明旭,吴树杭,陈雪松. 基于湿热环境耦合荷载作用的CFRP加固RC梁抗弯性能研究. 重庆交通大学学报(自然科学版). 2022(10): 62-68+92 .
    6. 肖新波,黎波,袁振圣. 氯盐侵蚀对CFRP加固RC梁抗弯性能影响. 混凝土. 2022(12): 44-46+51 .
    7. 肖新波,黎波,袁振圣. 环境温度对黏钢加固RC梁承载能力影响的试验研究. 混凝土. 2021(09): 22-24+32 .
    8. 罗毅,张翔,郭馨艳. 湿热环境下预应力CFRP加固RC梁疲劳性能数值分析. 华南理工大学学报(自然科学版). 2021(10): 70-77 .
    9. 毛利,王京伟,贾存威. 高桩梁板式码头的混凝土结构加固新技术. 交通与港航. 2021(06): 79-83 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 44.1 %FULLTEXT: 44.1 %META: 54.1 %META: 54.1 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %三亚: 0.4 %三亚: 0.4 %上海: 1.8 %上海: 1.8 %东莞: 0.4 %东莞: 0.4 %临汾: 0.4 %临汾: 0.4 %北京: 1.8 %北京: 1.8 %南京: 1.6 %南京: 1.6 %南通: 0.2 %南通: 0.2 %台北: 0.9 %台北: 0.9 %吉隆坡: 0.2 %吉隆坡: 0.2 %哥伦布: 0.4 %哥伦布: 0.4 %唐山: 0.4 %唐山: 0.4 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.7 %天津: 0.7 %宣城: 0.4 %宣城: 0.4 %广州: 0.2 %广州: 0.2 %张家口: 2.2 %张家口: 2.2 %徐州: 1.8 %徐州: 1.8 %成都: 1.1 %成都: 1.1 %扬州: 0.2 %扬州: 0.2 %杭州: 2.2 %杭州: 2.2 %格兰特县: 0.4 %格兰特县: 0.4 %池州: 0.4 %池州: 0.4 %湛江: 0.9 %湛江: 0.9 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.2 %石家庄: 0.2 %芒廷维尤: 20.6 %芒廷维尤: 20.6 %芜湖: 0.4 %芜湖: 0.4 %芝加哥: 0.7 %芝加哥: 0.7 %衡阳: 0.2 %衡阳: 0.2 %西宁: 47.0 %西宁: 47.0 %贵阳: 0.7 %贵阳: 0.7 %运城: 1.1 %运城: 1.1 %郑州: 0.7 %郑州: 0.7 %长沙: 3.1 %长沙: 3.1 %青岛: 0.2 %青岛: 0.2 %其他三亚上海东莞临汾北京南京南通台北吉隆坡哥伦布唐山嘉兴大连天津宣城广州张家口徐州成都扬州杭州格兰特县池州湛江漯河石家庄芒廷维尤芜湖芝加哥衡阳西宁贵阳运城郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(9)

    Article views(611) PDF downloads(12) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return