• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
CAI Xuan, WANG Changlin. BeiDou Navigation Satellite System/Inertial Measurement Unit Integrated Train Positioning Method Based on Improved Unscented Kalman Filter Algorithm[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 393-400. doi: 10.3969/j.issn.0258-2724.20170816
Citation: CAI Xuan, WANG Changlin. BeiDou Navigation Satellite System/Inertial Measurement Unit Integrated Train Positioning Method Based on Improved Unscented Kalman Filter Algorithm[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 393-400. doi: 10.3969/j.issn.0258-2724.20170816

BeiDou Navigation Satellite System/Inertial Measurement Unit Integrated Train Positioning Method Based on Improved Unscented Kalman Filter Algorithm

doi: 10.3969/j.issn.0258-2724.20170816
  • Received Date: 17 Nov 2017
  • Rev Recd Date: 26 Apr 2018
  • Available Online: 14 Sep 2018
  • Publish Date: 01 Apr 2020
  • In order to improve the accuracy and continuity of train positioning, BeiDou satellite receiver and inertial measurement unit were employed to construct an on-board integrated positioning system. Given the nonlinearity and robustness in the information fusion estimation of mulit-sensor positioning, an improved unscented Kalman filter (UKF) algorithm was proposed by applying the equivalence of robustness to the standard UKF. With the equivalent transformation of noise covariance in the standard UKF algorithm, the filter gain was adjusted, such that the filtering algorithm has a strong ability to suppress gross errors in sensor observation. The improved UKF algorithm and the standard UKF algorithm were applied to the integrated positioning for simulation comparison. The results show that, the filtering accuracy of the improved UKF is slightly higher than that of the standard UKF under normal conditions; the filtering accuracy and stability of the improved UKF is significantly better than the standard UKF when sensor observations contain gross errors. The average estimation errors of north and east positioning are respectively decreased by 48.5% and 48.8%. The average estimation errors of north and east speed are respectively declined by 43.7% and 48.9%.

     

  • SAAB S. A map matching approach for train positioning, part Ⅱ:application and experimentation[J]. IEEE Transactions on Vehicular Technology, 2000, 49(2): 476-484. doi: 10.1109/25.832979
    蔡伯根. 低成本列控系统的列车组合定位理论与方法[D]. 北京: 北京交通大学, 2010.
    马永强,郭进. 接触网定位器辅助列车定位技术[J]. 西南交通大学学报,2005,40(1): 1-4. doi: 10.3969/j.issn.0258-2724.2005.01.001

    MA Yongqiang, GUO Jin. Auxiliary train location technique with registration arms of electrified railways[J]. Journal of Southwest Jiaotong University, 2005, 40(1): 1-4. doi: 10.3969/j.issn.0258-2724.2005.01.001
    JULIE B, FILIP A, JULIETTE M, et al. Galileo for improving railway operations:question about the positioning performances analogy with the RAMS requirements allocated to safety applications[J]. European Transport Research Review, 2010, 2(2): 93-102. doi: 10.1007/s12544-010-0032-3
    刘江,蔡伯根,王剑. 基于卫星导航系统的列车定位技术现状与发展[J]. 中南大学学报(自然科学版),2014,45(11): 4033-4042.

    LIU Jiang, CAI Baigen, WANG Jian. Status and development of satellite navigation system based train positioning technology[J]. Journal of Central South University (Science and Technology), 2014, 45(11): 4033-4042.
    JWO D J, WENG T P. An adaptive sensor fusion method with applications in integrated navigation[J]. Journal of Navigation, 2008, 61(4): 705-721. doi: 10.1017/S0373463308004827
    张亮. 基于EKF的GPS/ODO列车定位方法研究[D]. 北京: 北京交通大学, 2016.
    JIANG Zhuqing, LIU Chonghua, ZHANG Gong, et al. GPS/INS integrated navigation based on UKF and simulated annealing optimized SVM[C]//2013 IEEE 78th Vehicular Technology Conference (VTC Fall). Las Vegas: IEEE, 2013: 30-38.
    JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422. doi: 10.1109/JPROC.2003.823141
    YU Z J, WEI J M, LIU H T. A new adaptive maneuvering target tracking algorithm using artificial neural networks[C]//Proceedings of the International Joint Conference on Neural Networks. Hong Kong: IEEE, 2008: 901-905.
    CHO S Y, CHOI W S. Robust positioning technique in low-cost DR/GPS for land navigation[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(4): 1132-1142. doi: 10.1109/TIM.2006.877718
    戴连君. 基于北斗卫星系统的列车定位方法研究[D]. 北京: 北京交通大学, 2013.
    杨波,秦永元,严恭敏. 列车组合导航系统研究与仿真[J]. 传感技术学报,2007,20(1): 242-246. doi: 10.3969/j.issn.1004-1699.2007.01.054

    YANG Bo, QIN Yongyuan, YAN Gongmin. Research and simulation on the integrated navigation system for train[J]. Chinese Journal of Sensors and Actuators, 2007, 20(1): 242-246. doi: 10.3969/j.issn.1004-1699.2007.01.054
    刘江,蔡伯根,唐涛,等. 低成本列车组合定位系统容错算法设计[J]. 铁道学报,2011,33(1): 39-46. doi: 10.3969/j.issn.1001-8360.2011.01.007

    LIU Jiang, CAI Baigen, TANG Tao, et al. Fault-tolerant algorithm design of low-cost integrated train positioning system[J]. Journal of the China Railway Society, 2011, 33(1): 39-46. doi: 10.3969/j.issn.1001-8360.2011.01.007
    易大江. 组合导航中的鲁棒滤波研究[D]. 长沙: 国防科学技术大学, 2008.
    杨元喜. 抗差估计理论及其应用[M]. 北京: 八一出版社, 1993: 1-10.
    YANG Y, XU T. An adaptive Kalman filter based on sage windowing weights and variance components[J]. Journal of Navigation, 2003, 56(2): 231-240. doi: 10.1017/S0373463303002248
    李雪鹏,张幼群,包括. UKF的改进算法及其在伪卫星定位中的应用[J]. 测绘科学技术学报,2008,25(2): 108-111.

    LI Xuepeng, ZHANG Youqun, BAO Kuo. Improved UKF algorithm for pseudolite positioning system[J]. Journal of Geomatics Science and Technology, 2008, 25(2): 108-111.
    杨元喜. 自适应动态导航定位[M]. 北京: 测绘出版社, 2006: 68-76.
  • Relative Articles

    [1]ZHANG Xin, ZHAI Linglu, WANG Jianshen, ZHANG Zhi, WU Chen. Weighted Fusion-Based Unscented Kalman Filter Positioning Algorithm for Normal-Conducting High-Speed Maglev Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 832-838. doi: 10.3969/j.issn.0258-2724.20230501
    [2]WU Boqian, CAI Baigen, LU Debiao, WANG Jian. GNSS/INS Based Risk Assessment in Train Localization[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1191-1198. doi: 10.3969/j.issn.0258-2724.20190981
    [3]ZENG Li, LONG Wei, LI Yanyan. Performance Degradation Diagnosis of Das Turbine Based on Improved FUKF[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 873-878. doi: 10.3969/j.issn.0258-2724.2018.04.028
    [4]YUAN Weina, WANG Jiaxuan. Fast Time-Varying Sparse Channel Estimation Based on Kalman Filter[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 835-841. doi: 10.3969/j.issn.0258-2724.2018.04.023
    [5]ZANG Yu, SHANGGUAN Wei, ZHANG Junzheng, CAI Baigen, WANG Huashen. Application of Hidden Markov Model for Fault Analysis of ODO in Train Location Unit[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1233-1240. doi: 10.3969/j.issn.0258-2724.2017.06.026
    [6]ZHANG Ming, WANG Shuo, YU Hui. Amendment Method for Planning Rescue Trajectory Based on Low-Level Wind Forecasting Model[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1258-1264. doi: 10.3969/j.issn.0258-2724.2016.06.028
    [7]ZHANG Wenchao, SU Qian, HUANG Junjie, WANG Wubin, JIANG Wei. Differential-Pressure Type Precision Measuring System of High-Speed Railway Substructure Settlement[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 669-675. doi: 10.3969/j.issn.0258-2724.2015.04.015
    [8]WANG Zhifu, LIU Mingchun, ZHOU Yang. Estimation of Longitudinal Speed of In-wheel Motor Driven Vehicle Using Fuzzy Extended Kalman Filter[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1094-1099. doi: 10.3969/j.issn.0258-2724.2015.06.017
    [9]XU Yantian, CHENG Pengfei, CAI Yanhui. Kalman Filter Algorithm for Medium-Range Real-Time Kinematic Positioning with One Reference Station[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 317-322,356. doi: 10.3969/j.issn.0258-2724.2013.02.020
    [10]ZHOU Cong, XIAO Jian, WANG Song. Application of Multirate Unscented Kalman Filter to State Estimation in Vehicle's Active Front Steering System[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 849-854,894. doi: 10.3969/j.issn.0258-2724.2012.05.019
    [11]LIAO Hua, FENG Wei, HUANG Ding-Fa. Design and Realization of Center Differential Positioning System[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 764-769. doi: 10.3969/j.issn.0258-2724.2011.05.009
    [12]MA Lei, SHI Xizhi. Recent Development on Consensus-Based Kalman Filtering in Multi-agent Systems[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 287-293. doi: 10.3969/j.issn.0258-2724.2011.02.019
    [13]ZHONG Xiao-Chun, ZHANG Hai-Tao, JIANG Xiang-Dong, LI Yuan-Zhong. SINS/ GPS Integrated Navigation System for High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 580-584. doi: 10. 3969/ j. issn. 0258-2724.
    [14]MA Yong-qiang, GUO Jin. Auxiliary Train Location Technique with Registration Arms of Electrified Railways[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 1-4.
    [15]GUOXiao-zhou, WANG Ying, WANG Shi-xiong. Location and Speed Detection System for High-Speed Maglev Vehicle[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 455-459.
    [16]LUO Rui, HUANGXiao-ming, ZHANGXiao-meng. Analysis of Bottom Cracks in Asphalt Layers with Geometric Functions and Weight Functions[J]. Journal of Southwest Jiaotong University, 2002, 15(4): 387-392.
    [17]WANGDong-guang. Comparison of Mental Workload Evaluation Techniques Based on the Driving Environment with Navigation System[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 254-257.
    [18]XIENing-bo, GUYan. Dedicated Short Range Communication and Its Application inTraffic Navigation System[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 62-66.
  • Cited by

    Periodical cited type(11)

    1. 张昕,翟凌露,王舰深,张志,吴晨. 基于加权融合的常导高速磁浮列车UKF定位算法. 西南交通大学学报. 2024(04): 832-838 . 本站查看
    2. 张雁鹏,张容容,孟楠,张冰清,肖夏. 零速修正辅助的可见光通信列车连续定位方法. 工程科学与技术. 2024(06): 248-257 .
    3. 王运明,程相,李卫东,初宪武. 基于因子图的BDS/IMU列车定位信息融合模型. 铁道科学与工程学报. 2023(03): 1077-1084 .
    4. 张雁鹏,孟楠,胥亚丽,肖夏. 基于Newton-UKF的可见光通信列车定位优化. 华中科技大学学报(自然科学版). 2023(06): 166-172 .
    5. 刘丹,姜维,蔡伯根,王剑,上官伟. 基于简化鲁棒UKF的GNSS/INS紧组合列车定位方法. 铁道学报. 2023(07): 62-71 .
    6. 郭斐,靳文军. 基于GPS钟差预测模型的列车定位技术研究. 铁路通信信号工程技术. 2022(04): 1-5 .
    7. 蔡煊,陶汉卿,侯宇婷,廖继轩,肖金梅,宋晓波. 北斗卫星导航系统在列车定位中的应用研究与发展. 铁道科学与工程学报. 2022(08): 2417-2427 .
    8. 杨佳,彭瑞召,季泽宇,王佳豪. 基于改进UKF算法的移动机器人定位方法研究. 计算机应用研究. 2022(11): 3303-3308 .
    9. 李航,杨志强,刘迪,杨兵. 改进交互多模型的GNSS/航位推算列车组合定位算法. 测绘科学. 2022(11): 10-16+84 .
    10. 陈永刚,王妍,白邓宇,熊文祥. 基于LSTM网络辅助无迹粒子滤波的列车定位方法研究. 云南大学学报(自然科学版). 2021(03): 477-485 .
    11. 程建华,王诺,尚修能. 基于改进UKF的组合导航系统航向角估计方法研究. 导航定位与授时. 2020(03): 112-119 .

    Other cited types(22)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.3 %FULLTEXT: 34.3 %META: 60.6 %META: 60.6 %PDF: 5.1 %PDF: 5.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.2 %其他: 8.2 %China: 0.4 %China: 0.4 %Rochester: 0.6 %Rochester: 0.6 %Seattle: 0.3 %Seattle: 0.3 %[]: 0.3 %[]: 0.3 %上海: 3.2 %上海: 3.2 %东京: 0.6 %东京: 0.6 %东莞: 0.4 %东莞: 0.4 %临汾: 0.3 %临汾: 0.3 %临沂: 0.1 %临沂: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 6.7 %北京: 6.7 %十堰: 0.3 %十堰: 0.3 %南京: 0.9 %南京: 0.9 %南昌: 0.7 %南昌: 0.7 %南通: 0.1 %南通: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.1 %天津: 0.1 %宁波: 0.1 %宁波: 0.1 %宜宾: 0.7 %宜宾: 0.7 %宣城: 0.1 %宣城: 0.1 %广州: 0.6 %广州: 0.6 %张家口: 1.7 %张家口: 1.7 %德阳: 0.1 %德阳: 0.1 %成都: 1.7 %成都: 1.7 %扬州: 0.3 %扬州: 0.3 %无锡: 0.3 %无锡: 0.3 %昆明: 0.3 %昆明: 0.3 %杭州: 0.4 %杭州: 0.4 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.3 %武汉: 0.3 %江门: 0.1 %江门: 0.1 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.1 %济南: 0.1 %淮北: 0.4 %淮北: 0.4 %深圳: 1.0 %深圳: 1.0 %温州: 0.4 %温州: 0.4 %湖州: 0.9 %湖州: 0.9 %漯河: 0.7 %漯河: 0.7 %石家庄: 3.9 %石家庄: 3.9 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 12.4 %芒廷维尤: 12.4 %芜湖: 0.3 %芜湖: 0.3 %芝加哥: 1.0 %芝加哥: 1.0 %苏州: 0.1 %苏州: 0.1 %莆田: 0.1 %莆田: 0.1 %衡阳: 0.3 %衡阳: 0.3 %西宁: 37.8 %西宁: 37.8 %西安: 0.6 %西安: 0.6 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.9 %运城: 0.9 %邯郸: 0.1 %邯郸: 0.1 %郑州: 2.5 %郑州: 2.5 %重庆: 0.1 %重庆: 0.1 %长沙: 2.2 %长沙: 2.2 %阳泉: 0.1 %阳泉: 0.1 %青岛: 1.0 %青岛: 1.0 %香港: 0.3 %香港: 0.3 %其他ChinaRochesterSeattle[]上海东京东莞临汾临沂兰州北京十堰南京南昌南通哈尔滨哥伦布嘉兴大连天津宁波宜宾宣城广州张家口德阳成都扬州无锡昆明杭州格兰特县武汉江门沈阳洛阳济南淮北深圳温州湖州漯河石家庄秦皇岛芒廷维尤芜湖芝加哥苏州莆田衡阳西宁西安西雅图诺沃克贵阳运城邯郸郑州重庆长沙阳泉青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views(847) PDF downloads(39) Cited by(33)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return