• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
ZENG Li, LONG Wei, LI Yanyan. Performance Degradation Diagnosis of Das Turbine Based on Improved FUKF[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 873-878. doi: 10.3969/j.issn.0258-2724.2018.04.028
Citation: ZENG Li, LONG Wei, LI Yanyan. Performance Degradation Diagnosis of Das Turbine Based on Improved FUKF[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 873-878. doi: 10.3969/j.issn.0258-2724.2018.04.028

Performance Degradation Diagnosis of Das Turbine Based on Improved FUKF

doi: 10.3969/j.issn.0258-2724.2018.04.028
  • Received Date: 10 Jul 2016
  • Publish Date: 01 Aug 2018
  • Owing to the difficulty in assessing the performance of a gas turbine during usage, because of sudden changes in its operation state, the use of an fading unscented Kalman filter with residual similarity (FUKF-RS) algorithm for the health parameter estimation of a gas turbine is proposed in this study. At first, under the common fading unscented Kalman filter (FUKF) framework, the health parameter estimation algorithm of the gas turbine was built. The weights before and after estimation were adjusted by multiplying the fading factor with the variance of measured value during the updating process of estimation; the fading factor was estimated by keeping the residual vectors to be orthogonal. Then, the similarity of the residual matrix was represented by the cosine value of the residual vector before and after the estimation, and the proportion of residual matrixes was determined according to the magnitude of the similarity. Finally, the fading factor of the algorithm was substituted by such proportion to calculate the residual matrix and obtain the quantitative parameter required for the calculation. The results show that the FUKF-RS algorithm can trace the sudden change of state of the gas turbine, and its accuracy in parameter estimation is higher by approximately 3% as compared to that of the FUKF algorithm. Additionally, as the component performance changes slowly, the parameter estimation curve will be smoother than that of the common FUKF, and the estimation accuracy will be increased by approximately 2%.

     

  • loading
  • 胡宇, 张世英, 杨月诚, 等.基于超球体平方根无迹Kalman滤波算法的涡扇发动机气路部件故障诊断[J].航空动力学报, 2014, 29(3):690-695. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201403029

    HU Yu, ZHANG Shiying, YANG Yuecheng, et al. Fault diagnosis of gas path components of turbofan engine based on spherical square root unscented Kalman filter algorithm[J]. Journal of Aerospace Power, 2014, 29(3):690-695. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201403029
    黄辉先, 任科明, 李燕, 等.基于渐消卡尔曼滤波算法的航空发动机参数估计办法[J].计算机应用, 2013, 33(10):2993-2995. http://d.wanfangdata.com.cn/Periodical/kxjsygc201333034

    HUANG Huixian, REN Keming, LI Yan, et, al. Aero-engine parameters estimation using fading Kalman filter algorithm[J]. Journal of Computer Applications, 2013, 33(10):2993-2995. http://d.wanfangdata.com.cn/Periodical/kxjsygc201333034
    王小旭, 赵琳, 夏全喜, 等.基于Unscented变换的强跟踪滤波器[J].控制与决策, 2010, 25(7):1064-1068. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201007020

    WANG Xiaoxu, ZHAO Lin, XIA Quanxi, et al. Strong tracking filter based on unscented transformation[J]. Control and Decision. 2010, 25(7):1064-1068. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201007020
    SEBASTIEN B, OLIVIER L. Coupling principal component analysis and kalman filtering algorithm for on-line aircraft engine diagnosis[J]. Control Engineering Practice. 2009, 17(4):494-502. doi: 10.1016/j.conengprac.2008.09.008
    张鹏.基于卡尔曼滤波的航空发动机故障诊断技术研究[D].南京: 南京航空航天大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10287-2010079957.htm
    李冬, 李本威, 赵鹏飞, 等.基于卡尔曼滤波和主元分析的发动机性能衰退[J].海军航空工程学院学报, 2013, 28(2):127-131. doi: 10.3969/j.issn.1673-1522.2013.02.009

    LI Dong, LI Benwei, ZHAO Pengfei, et al. Engine performance deterioration based on kalman filter and principle component analysis[J]. Journal of Naval Aeronautical and Astronautical, 2013, 28(2):127-131. doi: 10.3969/j.issn.1673-1522.2013.02.009
    胡宇, 杨月诚, 张世英, 等.基于改进平方根无迹卡尔曼滤波方法的涡扇发动机气路状态监控[J].航空动力学报, 2014, 29(2):442-450. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201402025

    HU Yu, YANG Yuecheng, ZHANG Shiying, et al. Turbofan engine gas path performance monitoring based on improved square root unscented Kalman filter[J]. Journal of Aerospace Power, 2014, 29(2):442-450. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201402025
    SIMON D, GARG S. A systematic approach for model-based aircraft engine performance estimation[C]//AIAA Infotoch@aeropaceConference, 2009. Seattle: AIAA, 2009: 1-18.
    RAJAMANI R, WANG J, JEONG K Y. Conditioned-based maintenance for aircraft engine[C]//ASME Turbo Expo 2004: Power for Land, Sea, and Air. New York: American Society of Mechanical Engineers, 2004: 819-823.
    刘铮. UKF算法及其改进算法的研究[D].长沙: 中南大学, 2009.
    刘贵喜, 马涛, 陈石磊.应用最小偏度采样的UPF算法[J].光学精密工程, 2008, 16(4):746-750. doi: 10.3321/j.issn:1004-924X.2008.04.028

    LIU Guixi, MA Tao, CHEN Shilei. Unscented particle filtering algorithm using minimal skew sampling[J]. Optics and Precision Engineering, 2008, 16(4):746-750. doi: 10.3321/j.issn:1004-924X.2008.04.028
    崔波, 张家树, 杨宇.基于分块EnKF的非线性目标跟踪算法[J].西南交通大学学报, 2013, 48(5):864-869. http://manu19.magtech.com.cn/Jweb_xnjd/CN/abstract/abstract11837.shtml

    CUI Bo, ZHANG Jiashu, YANG Yu. Nonlinear target tracking algorithm based on block ensemble kalman filter[J]. Journal of Southwest Jiaotong University, 2013, 48(5):864-869. http://manu19.magtech.com.cn/Jweb_xnjd/CN/abstract/abstract11837.shtml
    张祖涛, 张家树.基于UKF非线性人眼跟踪的驾驶员疲劳检测[J].西南交通大学学报, 2008, 43(6):698-702. http://manu19.magtech.com.cn/Jweb_xnjd/CN/abstract/abstract8962.shtml

    ZHANG Zutao, ZHANG Jiashu. Driver fatigue detection based on unscented kalman filter and eye tracking[J]. Journal of Southwest Jiaotong University. 2008, 43(6):98-702. http://manu19.magtech.com.cn/Jweb_xnjd/CN/abstract/abstract8962.shtml
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(483) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return