• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
PAN Yi, WANG Zhongkai, QU Zhe, ZHAO Chongjin. Seismic Performance of Owner-Built RC Frame Structures in Nepal[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 304-312. doi: 10.3969/j.issn.0258-2724.20170755
Citation: XIANG Qiqi, LI Yadong, WEI Kai, WANG Shunyi, YAO Changrong. Review of Bridge Foundation Scour[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 235-248. doi: 10.3969/j.issn.0258-2724.20170373

Review of Bridge Foundation Scour

doi: 10.3969/j.issn.0258-2724.20170373
  • Received Date: 09 May 2017
  • Rev Recd Date: 25 Apr 2018
  • Available Online: 10 Oct 2018
  • Publish Date: 01 Apr 2019
  • Scour is one of the key causes of bridge failures. This paper presents a comprehensive review of the current research on scour at bridge foundations from five aspects: mechanism, calculation, modelling, monitoring and countermeasures, load and deformation. Based on the mechanism of scour around bridge foundations, different formulae developed for calculating scour depth are compared and analysed, and the limitations of the existing formulae are summarized. The results of numerical and laboratory models established for the scour studies are presented, along with a summary of the experimental and simulation limits. Moreover, a summary of monitoring methods with their advantages and disadvantages, as well as the countermeasures with their mechanisms and the effects on lateral load and deformation of bridge pillars is given. Finally, the future research trends of bridge foundation scour are presented, which provides some reference for research, design, and construction.

     

  • DENG L, CAI C S. Applications of fiber optic sensors in civil engineering[J]. Structural Engineering and Mechanics, 2007, 25(5): 577-596. doi: 10.12989/sem.2007.25.5.577
    HUNT E B. Monitoring scour critical bridge[R], Washington D. C.: Transportation Research Board, National Research Council, 2009
    XIONG W, CAI C S, KONG X. Instrumentation design for bridge scour monitoring using fiber bragg grating sensors[J]. Applied Optics, 2012, 51(5): 547-557. doi: 10.1364/AO.51.000547
    LIANG F Y, BENNETT C, PARSONS R, et al. A literature review on behavior of scoured piles under bridges[C]//Proceadings of the 2009 International foundation Congress and Equipment Expo. Orlando: the International Foundation Congress & Equipment Expo, 2009: 482-489
    DENG L, CAI C S. Bridge scour:prediction,modeling,monitoring and countermeasures-review[J]. Practice Periodical on Structural Design and Construction, 2009, 15(2): 125-134.
    詹磊,董耀华,惠晓晓. 桥墩局部冲刷研究综述[J]. 水利电力科技,2007(3): 1-13.
    易仁彦. 桥梁坍塌事故的原因和风险分析[J]. 养护与管理,2016(4): 22-26.
    高冬光, 王亚玲. 桥涵水文[M]. 4版. 北京: 人民交通出版社, 2009
    MELVILLE B W, COLEMAN S E. Bridge scour[M]. Highlands Ranch: Water Resources Publications, 2000
    COLEMAN S E. Clearwater local scour at complex piers[J]. Journal of Hydraulic Engineering, 2005, 131(4): 330-334. doi: 10.1061/(ASCE)0733-9429(2005)131:4(330)
    WANG C, YU X, LIANG F Y. A review of bridge scour:mechanism,estimation,monitoring and countermeasures[J]. Natural Hazaids, 2017, 87(3): 1-26.
    BABU M R, RAO S N, SUNDAR V. Current-induced scour around a vertical pile in cohesive soil[J]. Ocean Engineering, 2003, 30(7): 893-920. doi: 10.1016/S0029-8018(02)00063-X
    WANG C, YU X, LIANG F Y. Erosion mechanism of local scour around cushioned caisson on reinforced ground[J]. Marine Georesources & Geotechnology, 2017, 35(7): 1028-1036.
    MELVILLE B M. Local scour at bridge sites[D]. New Zealand: University of Auckland, 1975
    ETTEMA R. Scour at bridge piers[D]. New Zealand: University of Auckland, 1980
    VEERAPPADEVARU G, RAMASWAMYIYENGER T, JAGADEESH T R. Temporal variation of vortex scour process around caisson piers[J]. Journal of Hydraulic Research, 2012, 50(2): 200-207. doi: 10.1080/00221686.2012.666832
    尹学良. 清水冲刷河床粗化研究[J]. 水利学报,1963(1): 17-27.
    秦荣昱,胡春宏. 河床冲刷粗化研究进展[J]. 泥沙研究,1997(2): 79-82.
    韩其为, 向熙瑰, 王玉成. 床沙粗化[C]//第二次河流泥沙国际学术讨论会论文集. 北京: 水利电力出版社, 1983: 356-367
    BRIAUD J L, TING F C K, CHEN H C, et al. Erosion function apparatus for scour rate predictions[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2001, 127(2): 105-113.
    中华人民共和国行业标准. 铁路工程水文勘测设计规范: TB10017—99[S]. 北京: 中国铁道出版社, 1999
    中华人民共和国行业标准. 公路工程水文勘测设计规范: JTG C30—2002[S]. 北京: 人民交通出版社, 2002
    RICHARDSON E V, DAVIS S R. Evaluating scour at bridges: 4th editon[M]. Washington D. C.: Federal Highway Administration, 2001
    MELVILLE B W, SUTHERLAND A J. Design method for local scour at bridge piers[J]. Journal of Hydraulic Engineering, 1988, 114(10): 1210-1226. doi: 10.1061/(ASCE)0733-9429(1988)114:10(1210)
    MELVILLE B W. Pier and abutment scour:integrated approach[J]. Journal of Hydraulic Engineering, 1997, 123(2): 125-136. doi: 10.1061/(ASCE)0733-9429(1997)123:2(125)
    张佰战,李付军. 桥墩局部冲刷计算研究[J]. 中国铁道科学,2004,25(2): 48-51. doi: 10.3321/j.issn:1001-4632.2004.02.010
    梁利博,杨小亭,张新燕. 圆柱桥墩局部冲刷的试验研究[J]. 中国农村水利水电,2010(1): 104-109.

    LIANG Libo, YANG Xiaoting, ZHANG Xinyan. Experimental research on cylinder pier local scour[J]. China Rural Water and Hydropower, 2010(1): 104-109.
    NEIL C R. River bed scour: a review for bridge engineers[M]. Calgary: [s.n.], 1964: 1-37
    SHEN H W, SCHNEIDER V R, KARAKI S. Local scour around bridge piers[J]. Proc. ASCE, 1969, 95(6): 1919-1940.
    JAIN S C, FISCHER E E. Scour around circular bridge piers at high Froude numbers[R]. Washington D. C.: Federal Highway Administration, 1979
    SHEPPARD D M, MILLER W. Live-bed local pier scour experiments[J]. Journal of Hydraulic Engineering, 2006, 132(7): 635-642. doi: 10.1061/(ASCE)0733-9429(2006)132:7(635)
    QI Meilan, LI Jinzhao, CHEN Qigang. Comparison of existing equations for local scour at bridge piers:parameter influence and validation[J]. Natural Hazards, 2016, 82(3): 2089-2105. doi: 10.1007/s11069-016-2287-z
    SHEPPARD D M, MILLER W. Evaluation of existing equations for local scour at bridge piers[J]. Journal of Hydraulic Engineering, 2014, 140(1): 14-23. doi: 10.1061/(ASCE)HY.1943-7900.0000800
    LIANG Fayun, WANG C, HUANG M, et al. Experimental observations and evaluations of formulae for local scour at pile groups in steady currents[J]. Marine Georesources & Geotechnology, 2017, 35(2): 245-255.
    LEE T L, JENG D S, ZHANG G H, et al. Neural network modeling for estimation of scour depth around bridge piers[J]. Journal of Hydrodynamics, 2007, 19(3): 378-386. doi: 10.1016/S1001-6058(07)60073-0
    CARDOSO A H, BETTESS R. Effect of time and channel geometry on scour at bridge abutments[J]. Journal of Hydraulic Engineering, 1999, 125(4): 388-399. doi: 10.1061/(ASCE)0733-9429(1999)125:4(388)
    OLIVETO G, HAGER W H. Temporal evolution of clear-water pier and abutment scour[J]. Journal of Hydraulic Engineering, 2002, 128(9): 811-820. doi: 10.1061/(ASCE)0733-9429(2002)128:9(811)
    CHANG W Y, LAI J S, YEN C L. Evolution of scour depth at circular bridge piers[J]. Journal of Hydraulic Engineering, 2004, 130(9): 905-913. doi: 10.1061/(ASCE)0733-9429(2004)130:9(905)
    MIA M F, NAGO H. Design method of time-dependent local scour at circular bridge pier[J]. Journal of Hydraulic Engineering, 2003, 129(6): 420-427. doi: 10.1061/(ASCE)0733-9429(2003)129:6(420)
    YANMAZ A M, ALTINBILEK H D. Study of time-dependent local scour around bridge piers[J]. Journal of Hydraulic Engineering, 1991, 117(10): 1247-1268. doi: 10.1061/(ASCE)0733-9429(1991)117:10(1247)
    KOTHYARI U, GARDE R, RANGA R K. Temporal variation of scour around circular bridge piers[J]. Journal of Hydraulic Engineering, 1992, 118(8): 1091-1106. doi: 10.1061/(ASCE)0733-9429(1992)118:8(1091)
    MELVILLE, B W, CHIEW Y M. Time scale for local scour at bridge piers[J]. Journal of Hydraulic Engineering, 1999, 125(1): 59-65. doi: 10.1061/(ASCE)0733-9429(1999)125:1(59)
    李成才. 桥墩局部冲刷试验及计算理论研究[D]. 南京: 河海大学, 2007
    刘谨,刘芳亮,冯良平,等. 某跨海大桥桥墩基础冲刷试验研究[J]. 公路,2012(10): 61-65. doi: 10.3969/j.issn.0451-0712.2012.10.014
    ZHAO Ming, ZHU Xiansong, CHENG Liang, et al. Experimental study of local scour around subsea caissons in steady currents[J]. Coastal Engineering, 2012, 60(1): 30-40.
    ATAIE-ASHTIANI B, BEHESHTI A A. Experimental investigation of clear-water local scour at pile groups[J]. Journal of Hydraulic Engineering, 2006, 132(10): 1100-1104. doi: 10.1061/(ASCE)0733-9429(2006)132:10(1100)
    卢中一, 高正荣, 杨程生. 大型沉井基础施工过程中局部冲刷试验研究[C]//第十四届中国海洋(岸)工程学术讨论会论文集(下册). 北京: 海洋出版社, 2009, 1139-1146
    张新燕,吕宏兴,沈波. 圆柱桥墩局部冲刷机理试验研究[J]. 水利水运工程学报,2012(2): 34-41. doi: 10.3969/j.issn.1009-640X.2012.02.006

    ZHANG Xinyan, LÜ Hongxing, SHEN Bo. Experimental studies on local scour mechanism of cylinder bridge piers[J]. Hydro-Science and Engineering, 2012(2): 34-41. doi: 10.3969/j.issn.1009-640X.2012.02.006
    梁发云,王琛,黄茂松,等. 沉井基础局部冲刷形态的体型影响效应与动态演化[J]. 中国公路学报,2013,29(9): 779-782.

    LIANG Fayun, WANG Chen, HUANG Maosong, et al. Scale effects on local scour configurations around caisson foundation and dynamic evolution[J]. China Journal of Highway and Transport, 2013, 29(9): 779-782.
    BAKER C J. The position of points of maximum and minimum shear stress upstream of cylinders mounted normal to flat plates[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1985, 18: 263-274. doi: 10.1016/0167-6105(85)90085-6
    SUMER B M, FREDSØE J. The mechanics of scour in the marine environment[M]. Singapore: World Scientific, 2002: 149-228
    ZHAO M, CHENG L. Numerical investigation of local scour below a vibrating pipeline under steady currents[J]. Coastal Engineering, 2010, 57: 397-406. doi: 10.1016/j.coastaleng.2009.11.008
    ZHAO M, CHENG L, ZANG Z. Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents[J]. Coastal Engineering, 2010, 57: 709-721. doi: 10.1016/j.coastaleng.2010.03.002
    LU J Y, SHI Z Z, HONG J H, et al. Temporal variation of scour depth at non-uniform cylindrical piers[J]. Journal of Hydraulic Engineering, 2011, 137(1): 45-56. doi: 10.1061/(ASCE)HY.1943-7900.0000272
    林海峰,王萍. 泰州大桥夹江桥动床模型试验研究[J]. 中国工程学科,2010,12(4): 86-89.
    ETTEMA R, MELVILLE B W, BARKDOLL B. Scale effect in pier-scour experiments[J]. Journal of Hydraulic Engineering, 1998, 124(6): 639-642. doi: 10.1061/(ASCE)0733-9429(1998)124:6(639)
    ETTEMA R, KIRKIL G, MUSTE M. Similitude of large-scale turbulence in experiments on local scour at cylinders[J]. Journal of Hydraulic Engineering, 2006, 132(1): 33-40. doi: 10.1061/(ASCE)0733-9429(2006)132:1(33)
    LEE S O, STURM T. Scaling issues for laboratory modeling of bridge pier scour[C]//Proceedings of the 4th International Conference on Scour and Erosion. Tokyo: ISSMGE, 2008: 111-115
    HUANG Wenrui, YANG Qiping, XIAO Hong. CFD modeling of scale effects on turbulence flow and scour around bridge piers[J]. Computers & Fluids, 2009, 38(5): 1050-1058.
    韦雁机,叶银灿,吴珂,等. 桩周局部冲刷三维数值模拟[J]. 海洋工程,2009,27(4): 61-66.

    WEI Yanji, YE Yincan, WU Ke, et al. 3D numerical modeling of flow and scour around a circular pile[J]. The Ocean Engineering, 2009, 27(4): 61-66.
    贠鹏. 桥墩局部冲刷的数值模拟研究[D]. 青岛: 中国海洋大学, 2012
    ZHU Zhiwen, LIU Zhenqing. CFD prediction of local scour hole around bridge piers[J]. Journal of Central South University, 2012, 19(1): 273-281. doi: 10.1007/s11771-012-1001-x
    XIONG W, CAI C S, KONG B, et al. CFD simulation and analyses for bridge-scour development using a dynamic-mesh updating technique[J]. Journal of Computing in Civil Engineering, 2016, 30(1): 1-10.
    SAGHRAVANI S F, AZHARI A. Simulation of clear water local scour around a group of bridge piers using an eulerian 3D,two-phase model[J]. Progress in Computational Fluid Dynamics, 2012, 12(5): 333-341. doi: 10.1504/PCFD.2012.049097
    KIM H S, NABI M, KIMURA I, et al. Numerical investigation of local scour at two adjacent cylinders[J]. Advances in Water Resources, 2014, 70: 131-147. doi: 10.1016/j.advwatres.2014.04.018
    BURKOW M, GRIEBEL M. A full three dimensional numerical simulation of the sediment transport and the scouring at a rectangular obstacle[J]. Computers & Fluids, 2015, 125: 1-10.
    OLSEN N R B, MELAEN M C. Three-dimensional calculation of scour around cylinders[J]. Journal of Hydraulic Engineering, 1993, 119(9): 1048-1054. doi: 10.1061/(ASCE)0733-9429(1993)119:9(1048)
    LEO C, VAN R. Application of sediment pick-up function[J]. Journal of Hydraulic Engineering, 1986, 112(9): 867-874. doi: 10.1061/(ASCE)0733-9429(1986)112:9(867)
    LEO C, VAN R, HENK V R, et al. Field verification of 2D and 3D suspended sediment Models[J]. Journal of Hydraulic Engineering, 1990, 116(10): 1270-1288. doi: 10.1061/(ASCE)0733-9429(1990)116:10(1270)
    OLSEN N R B. Three-dimensional CFD modeling of self-forming meandering channel[J]. Journal of Hydraulic Engineering, 2003, 129(5): 366-372. doi: 10.1061/(ASCE)0733-9429(2003)129:5(366)
    YOUNG G K, DOU X, SAFFARINIA K, et al. Testing abutment scour model[C]//Water Resources Engineering Conference. Virginia: ASCE, 1998: 180-185
    KASSEM A, SALAHELDIN T M, IMRAN J, et al. Numerical modeling of scour in cohesive soils around artificial rock island of cooper river bridge[J]. Transportation Research Record:Journal of the Transportation Research Board, 2003, 1851: 45-50. doi: 10.3141/1851-05
    MILLARD S G, BUNGEY J H, THOMAS C, et al. Assessing bridge pier scour by radar[J]. NDT & E International, 1997, 31(4): 251-258.
    PARK I, LEE J, CHO W. Assessment of bridge scour and riverbed variation by a ground penetrating radar[C]//10th International Conference on Ground Penetrating Radar. Delft: IEEE, 2005, 411-414
    FALCO F D, MELE R. The monitoring of bridges for scour by sonar and sediment[J]. NDT &E International, 2002, 35(2): 117-123.
    HUNT B E. Scour monitoring programs for bridge health[C]//Proceedings of 6th International Bridge Engineering Conference. Boston: National Academy of Engineering, 2005, 531-536
    YU X, ZABILANSKY L J. Time domain reflectometry for automatic bridge scour monitoring[J]. Geotechnical Special Publication, 2006, 149: 152-159.
    YU Xinbao, YU Xiong. Algorithm for time domain reflectometry bridge scour measurement system[C]//Proceeding of the 7th International Symposia on Field Measurements in Geomechanics. Boston: ASCE, 2007: 1-10
    LIN Y B, CHANG K C, LAI J S, et al. Application of optical fiber sensors on local scour monitoring[C]//Proceeding of IEEE Sensors. Vienna: IEEE, 2004, 832-835
    LIN Y B, CHEN J C, CHANG K C, et al. Real-time monitoring of local scour by using fiber Bragg grating sensors[J]. Smart Materials & Structures, 2005, 14(4): 664-670.
    LU J Y, HONG J H, SU C C, et al. Field measurements and simulation of bridge scour depth variation during floods[J]. Journal of Hydraulic Engineering, 2008, 134(6): 810-821. doi: 10.1061/(ASCE)0733-9429(2008)134:6(810)
    梁发云,王琛. 桥墩基础局部冲刷防护技术的对比分析[J]. 结构工程师,2014,30(5): 779-782.

    LIANG Fayun, WANG Chen. Review on countermeasures to bridge piers from local scour[J]. Structural Engineers, 2014, 30(5): 779-782.
    LAGASSE P F, CLOPPER P E, ZEVENBERGEN L W, et al. NCHRP report 593: countermeasures to protect bridge piers from scour[R]. Washington D. C.: Transportation Research Board, 2007
    BARKDOLL B D, ETTEMA R, MELVILLE B W. NCHRP report 587: countermeasures to protect bridge abutments from scour[R]. Washington D. C.: Transportation Research Board, 2007
    CHIEW Y M. Scour protection at bridge piers[J]. Journal of Hydraulic Engineering, 1992, 118(9): 1260-1269. doi: 10.1061/(ASCE)0733-9429(1992)118:9(1260)
    ZARRATI A R, GHOLAMI H, MASHAHIR M B. Application of collar to control scouring around rectangular bridge piers[J]. Journal of Hydraulic Research, 2004, 42(1): 97-103. doi: 10.1080/00221686.2004.9641188
    KUMAR V, RANGARAJU K G, VITTAL N. Reduction of local scour around bridge piers using slot and collar[J]. Journal of Hydraulic Engineering, 1999, 125(12): 1302-1305. doi: 10.1061/(ASCE)0733-9429(1999)125:12(1302)
    MELVILLE B W, HADFIELD A C. Use of sacrificial piles as pier scour countermeasures[J]. Journal of Hydraulic Engineering, 1999, 125(11): 1221-1224. doi: 10.1061/(ASCE)0733-9429(1999)125:11(1221)
    HAQUE A, RAHMAN M M, ISLAM G T, et al. Scour mitigation at bridge piers using sacrificial piles[J]. International Journal of Sediment Research,China, 2007, 22(1): 49-59.
    TAFAROJNORUZ A, GAUDIO R. Evaluation of flow-altering countermeasures against bridge pier scour[J]. Journal of Hydraulic Engineering, 2012, 138(3): 297-305. doi: 10.1061/(ASCE)HY.1943-7900.0000512
    WANG C, LIANG F Y, YU X. Experimental and numerical investigation of sacrificial piles to diminish local scour around pile groups[J]. Natural Hazards, 2017, 85: 1417-1435. doi: 10.1007/s11069-016-2634-0
    LAGASSE P F, CLOPPER P E, ZEVENBERGEN L W, et al. NCHRP report 593: countermeasures to protect bridge piers from scour[R]. Washington D. C.: Transportation Research Board, 2007
    LAUCHLAN C S, MELVILLE B W. Riprap protection at bridge piers[J]. Journal of Hydraulic Engineering, 2001, 127(5): 412-418. doi: 10.1061/(ASCE)0733-9429(2001)127:5(412)
    LIM F H, CHIEW Y M. Parametric study of riprap failure around bridge piers[J]. Journal of Hydraulic Research, 2001, 39(1): 61-72. doi: 10.1080/00221680109499803
    PARKER G, TOROESCOBAR C, VOIGT R L. Countermeasures to protect bridge piers from scour[R]. Minnesota: University of Minnesota, 1998
    LAGASSE P F, ZEVENBERGEN L W, SCHALL J D, et al. Bridge scour and stream instability countermeasures[R]. Washington D. C.: FHWA, 2001
    LAGASSE P F. 1998 Scanning review of European practice for bridge scour and stream instability countermeasures[R]. Washington D. C.: Transportation Research Board of the National Academies, 1999
    BEZGIN N O. Finite element modeling of soil structure interaction for drilled shaft foundation[D]. New Brunswick: The State University of New Jersey, 2005
    AVENT R R, ALAWADY M. Bridge scour and substructure deterioration:case study[J]. Journal of Bridge Engineering, 2005, 10(3): 247-254. doi: 10.1061/(ASCE)1084-0702(2005)10:3(247)
    DANIELS J, HUGHES D, RAMEY G E, et al. Effects of bridge pile bent geometry and levels of scour and P loads on bent pushover loads in extreme flood/scour events[J]. Practice Periodical on Structural Design and Construction, 2007, 12(2): 122-134. doi: 10.1061/(ASCE)1084-0680(2007)12:2(122)
    HUGHES D, RAMEY G E, HUGHES M L. Bridge pile bent number of piles and X-bracing system:impact on pushover capacity as scour increases[J]. Practice Periodical on Structural Design and Construction, 2007, 12(2): 82-95. doi: 10.1061/(ASCE)1084-0680(2007)12:2(82)
    LIN C, BENNETT C, HAN J, et al. Scour effects on the response of laterally loaded piles considering stress history of sand[J]. Computers & Geotechnics, 2010, 37(7): 1008-1014.
    LIN C. Evaluation of lateral behavior of pile-supported bridges under scour conditions[D]. Kansas: University of Kansas, 2012
    BROMS B B. Lateral resistance of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division, 1964, 90(SM2,Part 1): 27-63.
    BROMS B B. Lateral resistance of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division, 1964, 90(SM3,Part 1): 123-156.
    POULOS H G. Behavior of laterally loaded piles:I-single piles[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(5): 711-731.
    HETÉNYI M. Beams on elastic foundation; theory with applications in the fields of civil and mechanical engineering[D]. Michigan: The University of Michigan Press, 1964
    REESE L C, VAN IMPE W F, HOLTZ R D. Single piles and pile groups under lateral loading[J]. Applied Mechanics Reviews, 2000, 55(1): 9-10.
    NI S H, HUANG Y H, LO K F. Numerical investigation of the scouring effect on the lateral response of piles in sand[J]. Journal of Performance of Constructed Facilities, 2011, 26(3): 320-325.
    KUO Y S, ACHMUS M, KAO C S. Practical design considerations of monopile foundations with respect to scour[C]//Proceedings of Global Wind Power Conference 2008. Beijing: Global Wind Energy Council, 2008: 29-31
    LI F, HAN J, LIN C. Effect of scour on the behavior of laterally loaded single piles in marine clay[J]. Marine Georesources & Geotechnology, 2013, 31(3): 271-289.
    LIN C, HAN J, BENNETT C, et al. Analysis of laterally loaded piles in sand considering scour hole dimensions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 04014024. doi: 10.1061/(ASCE)GT.1943-5606.0001111
    REESE L C, COX W R, KOOP F D. Analysis of laterally loaded pile in sand[C]//Proceedings of the 6th Annual Offshore Technology Conference. Houston: OTC, 1974: 95-104
    杨晓峰,张陈蓉,袁聚云. 砂土中考虑冲刷的水平受荷桩等效应变楔方法[J]. 岩土力学,2015,36(10): 2946-2950.

    YANG Xiaofeng, ZHANG Chenrong, YUAN Juyun. Equivalent-strain wedge method for laterally loaded pile in sand considering scouring effect[J]. Rock and Soil Mechanics, 2015, 36(10): 2946-2950.
    ASHOUR M, NORRIS G, PILLING P. Lateral loading of a pile in layered soil using the strain wedge model[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(4): 303-315. doi: 10.1061/(ASCE)1090-0241(1998)124:4(303)
    DIAMANTIDIS D, ARNESEN K. Scour effects in piles structures-a sensitivity analysis[J]. Ocean Engineering, 1986, 13(5): 497-502. doi: 10.1016/0029-8018(86)90035-1
    ACHMUS M, KUO Y S, ABDELRAHMAN, K. Numerical investigation of scour effect on lateral resistance of windfarm monopiles[C]//20th International Offshore and Polar Engineering Conference. Beijing: ISOPE, 2010: 619-623
    MCCONNELL J R, CANN, M. Assessment of bridge strength and stability under scour conditions[C]//Proceedings of ASCE SEI 2010 Structures Congress. Orlando: ASCE, 2010: 121-132
    FOTI S, SABIA D. Influence of foundation scour on the dynamic response of an existing bridge[J]. Journal of Bridge Engineering, 2011, 16(2): 295-304. doi: 10.1061/(ASCE)BE.1943-5592.0000146
  • Relative Articles

    [1]CHEN Mingling, HUANG Bo, XUE Zechen, Zhou Jianting. Steel Caisson Lowering Process for Cross-Sea Bridges Under Complex Marine Conditions and Influence Optimization[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230712
    [2]LIU Xiumei, LI Yongtao. Review of Research on Vehicle Hydro-Pneumatic Suspension Technology[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230168
    [3]JIA Hongyu, XIAO Chuzhao, KANG Wei, WANG Chuanqi, ZHENG Shixiong. Review of Research on Vulnerability of Transportation Infrastructure to Extreme Climatic Conditions[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230650
    [4]ZHANG Haizhu, LI Rong, DING Guofu, MA Kai, DENG Hai. Research Status and Prospect of Decomposition of Top-Level Design Indicators for High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 456-466. doi: 10.3969/j.issn.0258-2724.20220188
    [5]GAO Hongli, SUN Yi, GUO Liang, YOU Zhichao, LIU Yuekai, LI Shichao, LEI Yuncong. Research Status and Development Trend of Machining Quality Prediction[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 121-141. doi: 10.3969/j.issn.0258-2724.20220085
    [6]WANG Yawei, ZHU Jin, ZHENG Kaifeng, SU Yonghua, GUO Hui, LI Yongle. Coupled Vibration Analysis of Earthquake-Wind-Vehicle-Bridge for Long-Span Bridges Considering Scouring Effect[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 323-331. doi: 10.3969/j.issn.0258-2724.20220091
    [7]LI Xi, YANG Hao. Research Progress on Buckling of Longitudinal Reinforcement Under Earthquake[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1043-1057. doi: 10.3969/j.issn.0258-2724.20220549
    [8]WANG Dongsheng, TONG Lei, WANG Rongxia, SUN Zhiguo. Review on Advances in Seismic Research of Large-Span Prestressed-Concrete Continuous Rigid-Frame Bridges[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 511-526. doi: 10.3969/j.issn.0258-2724.20210529
    [9]WU Xiaoping, ZHANG Zutao, PAN Yajia, QI Lingfei, ZHANG Tingsheng, HAO Daning. Research Status and Prospect of New Energy Regeneration Technology in Rail Transit Field[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1180-1193, 1202. doi: 10.3969/j.issn.0258-2724.20210788
    [10]LIU Zhigang, ZHANG Qiao, HE Xiaofeng, FAN Wenli. A Review of Vulnerable Line Identification in Power Systems[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 673-688. doi: 10.3969/j.issn.0258-2724.20200717
    [11]NONG Xingzhong, SHI Haiou, YUAN Quan, ZENG Wenqu, ZHENG Qing, DING Guofu. Review on BIM Technology Used in Urban Rail Transit Projects[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 451-460. doi: 10.3969/j.issn.0258-2724.20200018
    [12]DUAN Lunliang, WANG Shaohua, ZHANG Qibo, ZHENG Dongsheng. 3D Current-induced Local Scour around Dumbbell-Shaped Steel Suspending Cofferdams[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 704-711. doi: 10.3969/j.issn.0258-2724.2018.04.006
    [13]YUAN Yanping, XIANG Bo, CAO Xiaoling, ZHANG Nan, SUN Liangliang. Research Status and Development on Latent Energy Storage Technology of Building[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 585-598. doi: 10.3969/j.issn.0258-2724.2016.03.017
    [14]HE Chuan, FENG Kun, FANG Yong. Review and Prospects on Constructing Technologies of Metro Tunnels Using Shield Tunnelling Method[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 97-109. doi: 10.3969/j.issn.0258-2724.2015.01.015
    [15]CHEN Zhijian, TANG Yong, CHEN Song. Multi-scale Monitoring System Construction of River-Bed Scouring around Sutong Bridge[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 63-67,77. doi: 10.3969/j.issn.0258-2724.2012.021.01.011
    [16]HE Chuan, FENG Kun. Review and Prospect of Structure Research of Underwater Shield Tunnel with Large Cross-Section[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 1-11. doi: 10.3969/j.issn.0258-2724.2011.01.001
    [17]LI Cangsong, GAO Bo, MEI Zhirong. Basic Study on Method of Karst Geology Forecasting Based on Fractal Theory[J]. Journal of Southwest Jiaotong University, 2007, 20(5): 542-547.
    [18]ZHOU Lirong, XIANG Bo, ZHOU Depei. In-situ Test of Anti-washing-out of Red-Bed Soft Rock Slope Protected by Plants[J]. Journal of Southwest Jiaotong University, 2006, 19(2): 197-201.
  • Cited by

    Periodical cited type(48)

    1. 封林启,王炎,陈浙江,芦宇航,曹林龙. 装配式桥墩防冲刷装置参数化研究. 水利规划与设计. 2025(01): 131-136+152 .
    2. 陈猇,徐杰梁,陈启刚,刘昂,黄冉. 跨度不等并行桥梁局部冲刷最不利桥墩位置研究. 公路交通科技. 2024(04): 99-109 .
    3. 魏凯,冉彭鑫,裘放,洪杰. 牺牲桩截面特性对圆柱桥墩局部冲刷的影响试验研究. 土木与环境工程学报(中英文). 2024(05): 152-159 .
    4. 袁小兰. 考虑冲刷效应的大跨度斜拉桥桩基地震易损性分析. 湖南交通科技. 2024(03): 127-132 .
    5. 王慧,杜登轩,刘海超,喻国良,张民曦. 均匀来流中带环翼的复合桩墩的局部冲刷数值试验研究. 海洋工程装备与技术. 2024(03): 1-9 .
    6. 王瑞锋,杨元平,张芝永. 分层河床桩柱冲刷试验研究. 水电能源科学. 2024(10): 87-91 .
    7. 刘雄,金宇轩,张敬宇,毛阿立. 隧道复合式衬砌病害处治及套衬加固技术研究. 湖南交通科技. 2024(04): 141-144+150 .
    8. 雷体生,杨华平,钱永久. 考虑冲刷效应的钢筋混凝土拱桥桩基地震易损性分析. 工程抗震与加固改造. 2023(01): 150-157 .
    9. 余劲松,安浩然,郭来栋. 基于流固耦合理论的山区房屋洪水响应分析. 四川建筑. 2023(02): 192-195+201 .
    10. 石一,陈佳兴,柳彬,李仁杰. 桥墩局部冲刷防护措施综述. 中国水运(下半月). 2023(05): 95-97 .
    11. 王胜军,杨红梅. 桥梁冲刷水害整治方案研究. 内蒙古公路与运输. 2023(03): 39-43 .
    12. 魏凯,裘放,向琪芪. 基于机器学习的圆柱桥墩局部冲刷深度预测方法对比研究. 铁道技术标准(中英文). 2023(06): 42-50 .
    13. 黄严堃,魏松. 不同桩数的桥梁基础局部冲刷研究综述. 安徽建筑. 2023(07): 128-130 .
    14. 杨国港. 罗坝人行大桥技术状况及基础冲刷分析. 江西建材. 2023(05): 123-124+127 .
    15. 王德辉. 多波束测试系统在桥梁基础冲刷检测中的应用. 交通世界. 2023(20): 178-180 .
    16. 尚培培. 考虑护圈主动防护的桥墩局部冲刷数值模拟研究. 四川建筑. 2023(04): 198-200+203 .
    17. 魏凯,张必科,胡楷宇,张明金. CFD技术在桥梁水动力学课程教学中的应用. 高教学刊. 2023(27): 39-42+47 .
    18. 向琪芪,王顺意,郭辉,裘放. 恒定水流下单桩局部冲刷影响因素模拟分析. 铁道建筑. 2023(08): 82-86 .
    19. 齐庆辉,东培华,曲红玲. 石碛河桥梁工程建设对河道水动力条件影响研究. 中国水运. 2023(10): 116-117 .
    20. 焦响乐. 桥梁冲刷的河道防护措施比选研究. 水上安全. 2023(11): 66-68 .
    21. 殷峰,周航,丁选明,陈胜利,裴安青,李佑. 透明砂土休止角和起动流速基本特性试验研究. 土木与环境工程学报(中英文). 2022(01): 28-35 .
    22. 陈启刚,卢文良,解会兵,战家旺,杨丽辉. 桥渡设计课程发展趋势与教学改革研究. 高教学刊. 2022(02): 145-149+153 .
    23. 韩拓,张琳鹏,翟金萍. 某高速公路跨渭河特大桥桩基防冲刷下切防护施工技术要点探讨. 陕西水利. 2022(02): 152-153 .
    24. 杨程生,蒋振雄,俞竹青,高祥宇,高正荣. 长江下游大型沉井基础局部冲刷计算公式研究. 海洋工程. 2022(03): 105-114 .
    25. 杜杰贵,毋浩杰,康源. 桥梁基础冲刷监测方法研究进展. 自动化与仪器仪表. 2022(06): 1-6+12 .
    26. 陈岐龙. 基础冲刷对桥梁结构的影响分析. 工程技术研究. 2022(12): 231-233 .
    27. 杜登轩,乐绍林,周欢,Htay Htay Aung,喻国良. 均匀来流中承台相对埋深对复合桩墩局部水动力及冲刷的影响. 海洋工程装备与技术. 2022(02): 64-71 .
    28. 刘强,刘波. 文莱大摩拉岛跨海大桥基础冲刷研究. 世界桥梁. 2022(05): 81-86 .
    29. 卜建清,郭至博,张吉仁,黄晓明. 灾害作用下混凝土桥梁结构损伤研究进展. 现代交通与冶金材料. 2022(05): 61-70 .
    30. 姚昌荣,周雅宁,郭来栋,安浩然,刘悄超. 桥墩冲刷坑形态试验测绘新方法. 水道港口. 2022(04): 549-554 .
    31. 中国桥梁工程学术研究综述·2021. 中国公路学报. 2021(02): 1-97 .
    32. 胡勇. 常泰长江大桥主航道桥桥塔基础选型研究. 桥梁建设. 2021(02): 1-9 .
    33. 闻云呈,薛伟,闫杰超,夏云峰. 潮流对桥墩局部冲刷影响研究综述. 水道港口. 2021(02): 141-156 .
    34. 王大为. 高速公路桥梁高墩施工技术. 设备管理与维修. 2021(12): 154-155 .
    35. 董军,胡进宝. 某750kV架空输电线路工程跨河冲刷计算. 山西电力. 2021(03): 26-29 .
    36. 王德斌,夏青,孙治国,王东升,刘朵. 冲刷环境下跨海桥梁海陆地震动作用易损性对比研究. 工程科学与技术. 2021(05): 127-137 .
    37. 徐达,吕斌,崔鑫. 基于多波束探测的桥梁扩大基础埋深测试研究. 城市道桥与防洪. 2021(10): 196-198+22 .
    38. 熊文,蔡春声,张嵘钊. 桥梁水毁研究综述. 中国公路学报. 2021(11): 10-28 .
    39. 倪飞,房世龙,丁兵. 模型桥墩局部冲刷瞬时地形数据自动获取装备研制. 长江科学院院报. 2021(12): 158-162 .
    40. 张明金,姜徐磊,张金翔,魏凯,遆子龙. 桥涵水文2020年度研究进展. 土木与环境工程学报(中英文). 2021(S1): 280-287 .
    41. 李龙. 考虑土体冲刷应力历史的群桩基础受力特性分析. 喀什大学学报. 2021(06): 53-60 .
    42. 武永新,王建家,苑希民. 丁坝工程冲刷与防护措施研究综述. 自然灾害学报. 2020(01): 1-10 .
    43. 段海澎,刘武,朱大勇,魏松,胡甜. 非均质河床双排桥墩局部冲刷数值模拟研究. 水资源与水工程学报. 2020(02): 155-160 .
    44. 产华东,魏松,张英杰,龙庆,焦浩然. 桥墩局部冲刷机理研究进展综述. 安徽建筑. 2020(07): 168-169 .
    45. 魏志军. 下穿隧道施工对桥墩的影响分析. 交通世界. 2020(32): 134-136 .
    46. 袁野,王琛,梁发云. 基于改进SSRT测试方法的砂土颗粒侵蚀特性试验. 岩土工程学报. 2020(S1): 198-202 .
    47. 邓绍云. 我国桥墩局部冲刷与防护研究及发展方向. 北部湾大学学报. 2019(10): 52-62 .
    48. 王炎,叶楠,杨蝶俪,张楠楠,应俊杰. 密布半球型桥墩防冲刷装置局部冲刷试验研究. 低温建筑技术. 2019(12): 84-88 .

    Other cited types(58)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.3 %FULLTEXT: 30.3 %META: 59.2 %META: 59.2 %PDF: 10.6 %PDF: 10.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.7 %其他: 16.7 %其他: 0.1 %其他: 0.1 %Central District: 0.1 %Central District: 0.1 %Chandler: 0.1 %Chandler: 0.1 %China: 0.2 %China: 0.2 %Japan: 0.1 %Japan: 0.1 %Liverpool: 0.1 %Liverpool: 0.1 %North Point: 0.1 %North Point: 0.1 %Saitama: 0.1 %Saitama: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Tuen Mun San Hui: 0.1 %Tuen Mun San Hui: 0.1 %[]: 0.4 %[]: 0.4 %上海: 2.8 %上海: 2.8 %东京: 0.2 %东京: 0.2 %东莞: 0.9 %东莞: 0.9 %东营: 0.1 %东营: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %丹佛: 0.1 %丹佛: 0.1 %九龙: 0.1 %九龙: 0.1 %伊犁: 0.4 %伊犁: 0.4 %佛山: 0.1 %佛山: 0.1 %保定: 0.2 %保定: 0.2 %信阳: 0.1 %信阳: 0.1 %元朗新墟: 0.1 %元朗新墟: 0.1 %兰州: 0.9 %兰州: 0.9 %北京: 5.1 %北京: 5.1 %华盛顿州: 0.1 %华盛顿州: 0.1 %南京: 4.6 %南京: 4.6 %南宁: 0.4 %南宁: 0.4 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %厦门: 0.2 %厦门: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.9 %合肥: 0.9 %吉伦特省: 0.1 %吉伦特省: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %哈尔滨市南岗区: 0.2 %哈尔滨市南岗区: 0.2 %哥伦布: 0.3 %哥伦布: 0.3 %唐山: 0.2 %唐山: 0.2 %喀什: 0.1 %喀什: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %墨尔本: 0.1 %墨尔本: 0.1 %大连: 0.7 %大连: 0.7 %天津: 1.5 %天津: 1.5 %太原: 0.2 %太原: 0.2 %威海: 0.2 %威海: 0.2 %孝感: 0.1 %孝感: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.4 %安康: 0.4 %安顺: 0.2 %安顺: 0.2 %宜昌: 0.4 %宜昌: 0.4 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.2 %宣城: 0.2 %岳阳: 0.5 %岳阳: 0.5 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.2 %常州: 0.2 %广元: 0.1 %广元: 0.1 %广安: 0.1 %广安: 0.1 %广州: 1.4 %广州: 1.4 %廊坊: 0.1 %廊坊: 0.1 %张家口: 1.5 %张家口: 1.5 %德州: 0.1 %德州: 0.1 %德阳: 0.1 %德阳: 0.1 %德黑兰: 0.1 %德黑兰: 0.1 %戈尔韦: 0.1 %戈尔韦: 0.1 %成都: 1.9 %成都: 1.9 %扬州: 0.3 %扬州: 0.3 %昆明: 0.8 %昆明: 0.8 %朝阳: 0.7 %朝阳: 0.7 %杭州: 2.4 %杭州: 2.4 %武汉: 3.0 %武汉: 3.0 %汕头: 0.1 %汕头: 0.1 %江门: 0.1 %江门: 0.1 %池州: 0.4 %池州: 0.4 %沈阳: 0.6 %沈阳: 0.6 %泰安: 0.2 %泰安: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.6 %济南: 0.6 %海口: 0.1 %海口: 0.1 %深圳: 0.6 %深圳: 0.6 %温州: 0.1 %温州: 0.1 %渭南: 0.2 %渭南: 0.2 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %湘西: 0.1 %湘西: 0.1 %湛江: 0.1 %湛江: 0.1 %漯河: 0.1 %漯河: 0.1 %烟台: 0.2 %烟台: 0.2 %焦作: 0.1 %焦作: 0.1 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 1.4 %福州: 1.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %聊城: 0.1 %聊城: 0.1 %舟山: 0.4 %舟山: 0.4 %芒廷维尤: 10.8 %芒廷维尤: 10.8 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.3 %苏州: 0.3 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %西宁: 17.1 %西宁: 17.1 %西安: 1.1 %西安: 1.1 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.1 %运城: 0.1 %连云港: 0.2 %连云港: 0.2 %迪庆: 0.1 %迪庆: 0.1 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.5 %郑州: 1.5 %重庆: 1.4 %重庆: 1.4 %金华: 0.1 %金华: 0.1 %银川: 0.1 %银川: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 3.8 %长沙: 3.8 %阜阳: 0.1 %阜阳: 0.1 %阳江: 0.1 %阳江: 0.1 %青岛: 0.8 %青岛: 0.8 %香港: 0.2 %香港: 0.2 %黄石: 0.1 %黄石: 0.1 %黔南: 0.1 %黔南: 0.1 %黔西南: 0.1 %黔西南: 0.1 %其他其他Central DistrictChandlerChinaJapanLiverpoolNorth PointSaitamaSeattleTuen Mun San Hui[]上海东京东莞东营中山临汾临沂丹佛九龙伊犁佛山保定信阳元朗新墟兰州北京华盛顿州南京南宁南昌南通厦门台州合肥吉伦特省呼和浩特哈尔滨哈尔滨市南岗区哥伦布唐山喀什嘉兴墨尔本大连天津太原威海孝感宁波安康安顺宜昌宝鸡宣城岳阳巴音郭楞常州广元广安广州廊坊张家口德州德阳德黑兰戈尔韦成都扬州昆明朝阳杭州武汉汕头江门池州沈阳泰安洛阳济南海口深圳温州渭南湖州湘潭湘西湛江漯河烟台焦作珠海石家庄福州秦皇岛聊城舟山芒廷维尤芝加哥苏州莫斯科葫芦岛蚌埠西宁西安西雅图诺沃克贵阳运城连云港迪庆邢台邯郸郑州重庆金华银川长春长沙阜阳阳江青岛香港黄石黔南黔西南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article views(1301) PDF downloads(183) Cited by(106)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return