• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
JIANG Qilong, LIANG Da, YAN Feng. Application of Digital One-Cycle Control for Current in Electromagnetic Suspension System[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 1-8, 22. doi: 10.3969/j.issn.0258-2724.20170771
Citation: WU Xiaoping, ZHANG Zutao, PAN Yajia, QI Lingfei, ZHANG Tingsheng, HAO Daning. Research Status and Prospect of New Energy Regeneration Technology in Rail Transit Field[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1180-1193, 1202. doi: 10.3969/j.issn.0258-2724.20210788

Research Status and Prospect of New Energy Regeneration Technology in Rail Transit Field

doi: 10.3969/j.issn.0258-2724.20210788
  • Received Date: 19 Oct 2021
  • Rev Recd Date: 25 Feb 2022
  • Available Online: 17 Dec 2022
  • Publish Date: 01 Dec 2022
  • In recent years, the construction of intelligent monitoring equipment along railways and the environmental regeneration of new energy in the field of rail transit have attracted extensive attention. The basic principle of new energy regeneration technology is to capture clean environmental energy and convert the obtained energy into electricity to provide electricity for the normal operation of various intelligent sensors, traffic signal devices, and monitoring equipment. Many research achievements in various new energy regeneration technologies have been made in the field of rail transit worldwide, including wind, heat, solar, sound, brake, and vibration energy harvesting. Of these, vibration energy collection is a new energy regeneration technology with the highest degree of relevancy and the most in-depth research in the field of rail transit. The main forms of energy collection include electromagnetic, piezoelectric, friction, and hydraulic. By summarizing and sorting current research results, the existing technical problems and engineering application challenges can be summarized, including stability, durability, economy, energy size, motion amplification, and reliability. With the gradual maturity of such technology, the practical engineering applications of new energy regeneration technologies will promote intelligent and sustainable development in the field of rail transit.

     

  • [1]
    XIONG J Y, SHEN Z Y. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29.
    [2]
    KANG C J, SCHNEIDER S, WENNER M, et al. Development of design and construction of high-speed railway bridges in Germany[J]. Engineering Structures, 2018, 163: 184-196. doi: 10.1016/j.engstruct.2018.02.059
    [3]
    LI L S Z, YANG F X, CUI C T. High-speed rail and tourism in China: an urban agglomeration perspective[J]. International Journal of Tourism Research, 2019, 21(1): 45-60. doi: 10.1002/jtr.2240
    [4]
    LIU S L, WAN Y L, HA H K, et al. Impact of high-speed rail network development on airport traffic and traffic distribution: evidence from China and Japan[J]. Transportation Research Part A: Policy and Practice, 2019, 127: 115-135. doi: 10.1016/j.tra.2019.07.015
    [5]
    JING G Q, SIAHKOUHI M, QIAN K, et al. Development of a field condition monitoring system in high speed railway turnout[J]. Measurement, 2021, 169: 108358.1-108358.13.
    [6]
    AN B L, GAO L, XIN T, et al. A novel approach of identifying railway track rail’s modal frequency from wheel-rail excitation and its application in high-speed railway monitoring[J]. IEEE Access, 1809,7: 180986-180997.
    [7]
    ENTEZAMI M, WESTON P, STEWART E, et al. Lineside and on-board monitoring techniques for infrastructure and rolling stock on high-speed lines[J]. International Journal of Railway Technology, 2016, 5(4): 49-77. doi: 10.4203/ijrt.5.4.3
    [8]
    王玉泽,王森荣. 高速铁路无砟轨道监测技术[J]. 铁道标准设计,2015,59(8): 1-9. doi: 10.13238/j.issn.1004-2954.2015.08.001

    WANG Yuze, WANG Senrong. Monitoring technique for ballastless track of high-speed railway[J]. Railway Standard Design, 2015, 59(8): 1-9. doi: 10.13238/j.issn.1004-2954.2015.08.001
    [9]
    YÜKSEL K, KINET D, MOEYAERT V, et al. Railway monitoring system using optical fiber grating accelerometers[J]. Smart Materials and Structures, 2018, 27(10): 105033.1-105033.10.
    [10]
    LEONE G R, MAGRINI M, MORONI D, et al. A smart device for monitoring railway tracks in remote areas[C]//2016 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM). Reggio Calabria: IEEE, 2016: 1-5.
    [11]
    O’CONNORS M, ZHANG Y L, et al. Long-term performance assessment of the Telegraph Road Bridge using a permanent wireless monitoring system and automated statistical process control analytics[J]. Structure and Infrastructure Engineering, 2017, 13(5): 604-624. doi: 10.1080/15732479.2016.1171883
    [12]
    BERNAL E, SPIRYAGIN M, COLE C. Onboard condition monitoring sensors, systems and techniques for freight railway vehicles: a review[J]. IEEE Sensors Journal, 2019, 19(1): 4-24. doi: 10.1109/JSEN.2018.2875160
    [13]
    王辉. 车载式轨道监测系统运用分析及其WEB软件设计[J]. 上海铁道科技,2008(2): 49-51. doi: 10.3969/j.issn.1673-7652.2008.02.024
    [14]
    CAMMARANO A, SPENZA D, PETRIOLI C. Energy-harvesting WSNs for structural health monitoring of underground train tunnels[C]// 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). [S.l.]: IEEE, 2013: 9-10.
    [15]
    GONCHIGSUMLAA K, KIM Y I, BAYARSAIKHAN P. Design and experiment of energy harvesting power supply for wireless sensor network in freight train monitoring[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(6): 1135-1142. doi: 10.1007/s12541-019-00290-y
    [16]
    LEWIS R W, MADDISON S, STEWART E J C. An extensible framework architecture for wireless condition monitoring applications for railway rolling stock[C]// 6th IET Conference on Railway Condition Monitoring (RCM 2014). Birmingham: IET Conference Publications, 2014: 1-6.
    [17]
    GONZÁLEZ-GIL A, PALACIN R, BATTY P. Sustainable urban rail systems: strategies and technologies for optimal management of regenerative braking energy[J]. Energy Conversion and Management, 2013, 75: 374-388. doi: 10.1016/j.enconman.2013.06.039
    [18]
    BOSSO N, MAGELLI M, ZAMPIERI N. Application of low-power energy harvesting solutions in the railway field: a review[J]. Vehicle System Dynamics, 2021, 59(6): 841-871. doi: 10.1080/00423114.2020.1726973
    [19]
    孙威,刘亚男. 高效集风式隧道风能发电装置设计与研究[J]. 应用能源技术,2017(10): 44-47. doi: 10.3969/j.issn.1009-3230.2017.10.014

    SUN Wei, LIU Yanan. DesignandResearch of electric generating device in the form of efficient windy energy collecting of tunnel[J]. Applied Energy Technology, 2017(10): 44-47. doi: 10.3969/j.issn.1009-3230.2017.10.014
    [20]
    程耀庆. 基于微型压电能量采集器的无线风速监测节点[D]. 重庆: 重庆大学, 2014.
    [21]
    马江. 风电在铁路上应用的设想[J]. 京铁科技通讯:太原刊,2004(4): 21-22.
    [22]
    路成强. 铁路货运车辆的双系统供电装置研究与设计[D]. 大连: 大连交通大学, 2018.
    [23]
    NURMANOVA V, BAGHERI M, PHUNG T, et al. Feasibility study on wind energy harvesting system implementation in moving trains[J]. Electrical Engineering, 2018, 100(3): 1837-1845. doi: 10.1007/s00202-017-0664-6
    [24]
    PAN H Y, LI H, ZHANG T S, et al. A portable renewable wind energy harvesting system integrated S-rotor and H-rotor for self-powered applications in high-speed railway tunnels[J]. Energy Conversion and Management, 2019, 196: 56-68. doi: 10.1016/j.enconman.2019.05.115
    [25]
    GUO Z J, LIU T H, XU K, et al. Parametric analysis and optimization of a simple wind turbine in high speed railway tunnels[J]. Renewable Energy, 2020, 161: 825-835. doi: 10.1016/j.renene.2020.07.099
    [26]
    ZHENG P, QI L F, SUN M D, et al. A novel wind energy harvesting system with hybrid mechanism for self-powered applications in subway tunnels[J]. Energy, 2021, 227: 120446.1-120446.17.
    [27]
    AHN D, CHOI K. Performance evaluation of thermoelectric energy harvesting system on operating rolling stock[J]. Micromachines, 2018, 9(7): 00359.1-00359.12.
    [28]
    GAO M Y, SU C G, CONG J L, et al. Harvesting thermoelectric energy from railway track[J]. Energy, 2019, 180: 315-329. doi: 10.1016/j.energy.2019.05.087
    [29]
    RUSCELLI A L, CECCHETTI G, CASTOLDI P. Energy harvesting for on-board railway systems[C]//2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). Naples: [s.n.], 2017: 397-402.
    [30]
    HAO D N, ZHANG T S, GUO L, et al. A high-efficiency, portable solar energy-harvesting system based on a foldable-wings mechanism for self-powered applications in railways[J]. Energy Technology, 2021, 9(4): 2000794.1-2000794.17.
    [31]
    KRALOV I, TERZIEVA S, IGNATOV I. Analysis of methods and mems for acoustic energy harvesting with application in railway noise reduction[J]. Romanian Review Precision Mechanics, Optics and Mechatronics, 2011(40): 123-128.
    [32]
    NOH H M. Acoustic energy harvesting using piezoelectric generator for railway environmental noise[J]. Advances in Mechanical Engineering, 2018, 10(7): 168781401878505.1-168781401878505.9.
    [33]
    WANG Y, ZHU X, ZHANG T S, et al. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film[J]. Applied Energy, 2018, 230: 52-61. doi: 10.1016/j.apenergy.2018.08.080
    [34]
    JIANG Y, LIU J Q, TIAN W, et al. Energy harvesting for the electrification of railway stations: getting a charge from the regenerative braking of trains[J]. IEEE Electrification Magazine, 2014, 2(3): 39-48. doi: 10.1109/MELE.2014.2333561
    [35]
    KALEYBAR H J, KOJABADI H M, BRENNA M, et al. An intelligent strategy for regenerative braking energy harvesting in AC electrical railway substation[C]//2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). Bangalore: IEEE International Conference Publications , 2017: 391-396.
    [36]
    翟婉明. 车辆-轨道耦合动力学·上册[M]. 4版. 北京: 科学出版社, 2014: 106-115.
    [37]
    GAO M Y, LI Y W, LU J, et al. Condition monitoring of urban rail transit by local energy harvesting[J]. International Journal of Distributed Sensor Networks, 2018, 14(11): 155014771881446.1-155014771881446.16.
    [38]
    DE PASQUALE G, SOMÀ A, ZAMPIERI N. Design, simulation, and testing of energy harvesters with magnetic suspensions for the generation of electricity from freight train vibrations[J]. Journal of Computational and Nonlinear Dynamics, 2012, 7(4): 1-9.
    [39]
    欧阳冬,张继业,张卫华. 能量回馈式主动悬架研究[J]. 机械与电子,2008,26(2): 7-10. doi: 10.3969/j.issn.1001-2257.2008.02.002

    OUYANG Dong, ZHANG Jiye, ZHANG Weihua. Self-powered active suspension for vehicle[J]. Machinery & Electronics, 2008, 26(2): 7-10. doi: 10.3969/j.issn.1001-2257.2008.02.002
    [40]
    董彦辰,张业伟,陈立群. 惯容器非线性减振与能量采集一体化模型动力学分析[J]. 应用数学和力学,2019,40(9): 968-979.

    DONG Yanchen, ZHANG Yewei, CHEN Liqun. Dynamic analysis of the nonlinear vibration absorber-energy harvester integration model with inerters[J]. Applied Mathematics and Mechanics, 2019, 40(9): 968-979.
    [41]
    刘双双. 基于麦弗逊悬架减振器柱风致振动能量回收研究[D]. 青岛: 青岛理工大学, 2018.
    [42]
    吴子英,位强,师文涵,等. 双稳态减速带能量捕获装置动力学特性研究[J]. 机械科学与技术,2019,38(9): 1357-1365. doi: 10.13433/j.cnki.1003-8728.20180318

    WU Ziying, WEI Qiang, SHI Wenhan, et al. Exploring dynamic characteristics of bi-stable speed bump energy harvester[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1357-1365. doi: 10.13433/j.cnki.1003-8728.20180318
    [43]
    朱子豪,杨俭,袁天辰,等. 汽车行驶减振带振动发电仿真研究[J]. 计算机仿真,2016,33(5): 152-155. doi: 10.3969/j.issn.1006-9348.2016.05.032

    ZHU Zihao, YANG Jian, YUAN Tianchen, et al. Simulation study on vibration power generation of vehicle driving through speed bump[J]. Computer Simulation, 2016, 33(5): 152-155. doi: 10.3969/j.issn.1006-9348.2016.05.032
    [44]
    孔凡国,吴冠霖. 电磁式公路减速带发电装置理论研究[J]. 机械设计与制造,2014(4): 76-78. doi: 10.3969/j.issn.1001-3997.2014.04.024

    KONG Fanguo, WU Guanlin. Theoretical research of speed controlling and electricity generating humps by electromagnetic[J]. Machinery Design & Manufacture, 2014(4): 76-78. doi: 10.3969/j.issn.1001-3997.2014.04.024
    [45]
    GAO M Y, WANG P, CAO Y, et al. Design and verification of a rail-borne energy harvester for powering wireless sensor networks in the railway industry[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1596-1609.
    [46]
    TIAN J Y, FENG H H, CHEN Y F, et al. Research on coupling transfer characteristics of vibration energy of free piston linear generator[J]. Journal of Beijing Institute of Technology, 2020, 29(4): 556-567.
    [47]
    TEHRANI M G, GATTI G, BRENNAN M J, et al. Energy harvesting from train vibrations[C]//Proceeding of the 11th International Conference on Vibration Problems. Crete: [s.n.], 2013: 9-12.
    [48]
    POURGHODRAT A, NELSON C A, PHILLIPS K J, et al. Improving an energy harvesting device for railroad safety applications[C]//Proc SPIE 7977, Active and Passive Smart Structures and Integrated Systems 2011. San Diego: [s. n.], 2011: 297-305.
    [49]
    KALAAGI M, SEETHARAMDOO D. Electromagnetic energy harvesting systems in the railway environment: state of the art and proposal of a novel metamaterial energy harvester[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). Krakow: IEEE, 2019: 1-5.
    [50]
    COSTANZO L, VITELLI M, PAN Y, et al. Maximizing the power extraction from train suspension energy harvesting system[C]//Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Anaheim: [s.n.], 2019: 1-7.
    [51]
    ZHANG X T, PAN H Y, QI L F, et al. A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads[J]. Applied Energy, 2017, 204: 1535-1543. doi: 10.1016/j.apenergy.2017.04.064
    [52]
    PAN Y, GUO S J, JIANG R J, et al. Performance evaluation of train suspension energy harvesting shock absorber on railway vehicle dynamics[C]//Proceedings of ASME 2018 Dynamic Systems and Control Conference. Atlanta: [s.n.], 2018, 3: 1-6.
    [53]
    WU X P, QI L F, ZHANG T S, et al. A novel kinetic energy harvester using vibration rectification mechanism for self-powered applications in railway[J]. Energy Conversion and Management, 2021, 228: 113720.1-113720.12. doi: 10.1016/j.enconman.2020.113720
    [54]
    PAN Y, LIN T, QIAN F, et al. Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation[J]. Applied Energy, 2019, 247: 309-321. doi: 10.1016/j.apenergy.2019.03.051
    [55]
    GAO M Y, CONG J L, XIAO J L, et al. Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport[J]. Applied Energy, 2020, 257: 113969.1-113969.19.
    [56]
    DOTTI F E, SOSA M D. Pendulum systems for harvesting vibration energy from railroad tracks and sleepers during the passage of a high-speed train: a feasibility evaluation[J]. Theoretical and Applied Mechanics Letters, 2019, 9(4): 229-235. doi: 10.1016/j.taml.2019.03.005
    [57]
    ABDELKAREEM M A A, XU L, ALI M K A, et al. Vibration energy harvesting in automotive suspension system: a detailed review[J]. Applied Energy, 2018, 229: 672-699. doi: 10.1016/j.apenergy.2018.08.030
    [58]
    闫泽涛,王学东. 基于压电式能量转换的微型振动能量采集器在物联网轨道交通中的应用[J]. 微处理机,2019,40(5): 48-52,59. doi: 10.3969/j.issn.1002-2279.2019.05.012

    YAN Zetao, WANG Xuedong. Application of miniature vibration energy collector based on piezoelectric energy conversion in IoT rail transit[J]. Microprocessors, 2019, 40(5): 48-52,59. doi: 10.3969/j.issn.1002-2279.2019.05.012
    [59]
    袁天辰. 基于车辆运行的轨道振动能量回收系统研究[D]. 上海: 上海工程技术大学, 2014.
    [60]
    杨沥. 压电式轨道振动能量采集方法与非线性研究[D]. 上海: 上海工程技术大学, 2020.
    [61]
    ZHAI W M, LIU P F, LIN J H, et al. Experimental investigation on vibration behaviour of a CRH train at speed of 350 km/h[J]. International Journal of Rail Transportation, 2015, 3(1): 1-16. doi: 10.1080/23248378.2014.992819
    [62]
    PETRIAEV A. The vibration impact of heavy freight train on the roadbed[J]. Procedia Engineering, 2016, 143: 1136-1143. doi: 10.1016/j.proeng.2016.06.143
    [63]
    LI T, SU Q, KAEWUNRUEN S. Seismic metamaterial barriers for ground vibration mitigation in railways considering the train-track-soil dynamic interactions[J]. Construction and Building Materials, 2020, 260: 119936.1-119936.15. doi: 10.1016/j.conbuildmat.2020.119936
    [64]
    NELSON C A, PLATT S R, ALBRECHT D, et al. Power harvesting for railroad track health monitoring using piezoelectric and inductive devices[C]//Proc SPIE 6928, Active and Passive Smart Structures and Integrated Systems 2008. San Diego: [s.n.], 2008: 198-206.
    [65]
    MOUAPI A, HAKEM N, KANDIL N, et al. Energy harvesting design for autonomous Wireless Sensors Network applied to trains[J]. 2016 IEEE International Ultrasonics Symposium (IUS), 2016, 1: 1-4.
    [66]
    FU H L, SONG W Z, QIN Y, et al. Broadband vibration energy harvesting from underground trains for self-powered condition monitoring[C]//2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS). Krakow: IEEE, 2019: 1-5.
    [67]
    HOU W Q, ZHENG Y, GUO W, et al. Piezoelectric vibration energy harvesting for rail transit bridge with steel-spring floating slab track system[J]. Journal of Cleaner Production, 2021, 291: 125283.1-125283.15.
    [68]
    YUAN T C, YANG J, SONG R G, et al. Vibration energy harvesting system for railroad safety based on running vehicles[J]. Smart Materials and Structures, 2014, 23(12): 125046.1-125046.15.
    [69]
    GENG L, BIAN S, LI T, et al. Application of triboelectric nanogenerator in the railway system[C]//International Conference on Electrical and Information Technologies for Rail Transportation. Singapore: Springer, 2017: 895-904.
    [70]
    MI J, XU L, GUO S J, et al. Suspension performance and energy harvesting property study of a novel railway vehicle bogie with the hydraulic-electromagnetic energy-regenerative shock absorber[C]//SAE Technical Paper Series. Warrendale: SAE International, 2017: 1-12.
    [71]
    NELSON C A, POURGHODRAT A, FATEH M. Energy harvesting from vertical deflection of railroad track using a hydraulic system for improving railroad track safety[C]//Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition. Denver: [s.n.], 2012: 259-266.
    [72]
    王中林, 杨进, 杨亚, 等. 一种基于摩擦纳米发电机的多自由度能量采集装置: CN201310298069.2[P], 2013
    [73]
    LIU W L, WANG Z, WANG G, et al. Integrated charge excitation triboelectric nanogenerator[J]. Nature Communications, 2019, 1(10): 1426.1-1426.9.
    [74]
    WANG Z L, JIANG T, XU L. Toward the blue energy dream by triboelectric nanogenerator networks[J]. Nano Energy, 2017, 39: 9-23. doi: 10.1016/j.nanoen.2017.06.035
    [75]
    SHEN W, HUANG H L, PANG Y, et al. Review of the energy saving hydraulic system based on common pressure rail[J]. IEEE Access, 2017, 5: 655-669. doi: 10.1109/ACCESS.2017.2648642
    [76]
    GONG J, ZHANG D Q, GUO Y, et al. Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system[J]. Applied Energy, 2019, 233/234: 724-734. doi: 10.1016/j.apenergy.2018.10.066
    [77]
    SHI H, YUE Y Y, WANG H T, et al. Design and performance analysis of human walking induced energy recovery system by means of hydraulic energy conversion and storage[J]. Energy Conversion and Management, 2020, 217: 113008.1-113008.14.
    [78]
    GAO M Y, WANG P, WANG Y F, et al. Self-powered ZigBee wireless sensor nodes for railway condition monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 900-909. doi: 10.1109/TITS.2017.2709346
    [79]
    HADAS Z, SMILEK J, RUBES O. Energy harvesting from passing train as source of energy for autonomous trackside objects[J]. MATEC Web of Conferences, 2018, 1: 251-256.
    [80]
    JIN L, DENG W L, SU Y C, et al. Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system[J]. Nano Energy, 2017, 38: 185-192. doi: 10.1016/j.nanoen.2017.05.018
    [81]
    WANG L, LUO G X, JIANG Z D, et al. Broadband vibration energy harvesting for wireless sensor node power supply in train container[J]. Review of Scientific Instruments, 2019, 90(12): 125003.1-125003.10.
  • Relative Articles

    [1]MENG Chuncheng, QU Daoyuan, DUAN Xiaochen. Nonlinear Prediction and Inversion of Civil Engineering Cost of Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 137-146. doi: 10.3969/j.issn.0258-2724.20230209
    [2]LIU Wei, LI Songyuan, TANG Yuning. Simulation of Dynamic Coupling of Metro-Earth-Grid for DC Interference in Rail Transit[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 156-165. doi: 10.3969/j.issn.0258-2724.20230052
    [3]ZHANG Haizhu, LI Rong, DING Guofu, MA Kai, DENG Hai. Research Status and Prospect of Decomposition of Top-Level Design Indicators for High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 456-466. doi: 10.3969/j.issn.0258-2724.20220188
    [4]GAO Hongli, SUN Yi, GUO Liang, YOU Zhichao, LIU Yuekai, LI Shichao, LEI Yuncong. Research Status and Development Trend of Machining Quality Prediction[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 121-141. doi: 10.3969/j.issn.0258-2724.20220085
    [5]GAO Shibin, LUO Jiaming, CHEN Weirong, HU Haitao, TU Chunming, CHEN Yanbo, XIAO Fan, WANG Feikuan. Rail Transit “Network-Source-Storage-Vehicle” Collaborative Energy Supply Technology System[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 959-979, 989. doi: 10.3969/j.issn.0258-2724.20220210
    [6]GAO Guoqiang, PENG Wei, MA Yaguang, QIAN Pengyu, XIANG Yu, WANG Qingsong, YAN Liting, WU Guangning. Research Progress and Prospect of Gallium-Based Liquid Metals in Electrical-Thermal-Mechanics Field[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1203-1220. doi: 10.3969/j.issn.0258-2724.20220732
    [7]DENG Zigang, LIU Zongxin, LI Haitao, ZHANG Weihua. Development Status and Prospect of Maglev Train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474, 530. doi: 10.3969/j.issn.0258-2724.20220001
    [8]NONG Xingzhong, SHI Haiou, YUAN Quan, ZENG Wenqu, ZHENG Qing, DING Guofu. Review on BIM Technology Used in Urban Rail Transit Projects[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 451-460. doi: 10.3969/j.issn.0258-2724.20200018
    [9]GU Minjie, LI Wuqian, LI Qi. Influence of Section Types on Noise from Elevated Rail Transit Lines[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 715-723. doi: 10.3969/j.issn.0258-2724.20180262
    [10]XIANG Qiqi, LI Yadong, WEI Kai, WANG Shunyi, YAO Changrong. Review of Bridge Foundation Scour[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 235-248. doi: 10.3969/j.issn.0258-2724.20170373
    [11]TAN Deqiang, MO Jiliang, PENG Jinfang, LUO Jian, CHEN Weirong, ZHU Minhao. Research and Prospect on High-Speed Catenary Component Failure[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 610-619. doi: 10.3969/j.issn.0258-2724.2018.03.024
    [12]ZHAI Wanming, ZHAO Chunfa. Frontiers and Challenges of Sciences and Technologies in Modern Railway Engineering[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    [13]MAI Ruikun, LI Yong, HE Zhengyou, YANG Mingkai, LU Liwen, LIU Yeran, CHEN Yang, LIN Tianren, XU Danlu. Wireless Power Transfer Technology and Its Research Progress in Rail Transportation[J]. Journal of Southwest Jiaotong University, 2016, 29(3): 446-461. doi: 10.3969/j.issn.0258-2724.2016.03.005
    [14]HE Chuan, FENG Kun, FANG Yong. Review and Prospects on Constructing Technologies of Metro Tunnels Using Shield Tunnelling Method[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 97-109. doi: 10.3969/j.issn.0258-2724.2015.01.015
    [15]SHANG Bin, ZHANG Xiaoning. Passenger-Flow Spatial Distribution Model of Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 539-545. doi: 10.3969/j.issn.0258-2724.2013.03.023
    [16]HE Chuan, FENG Kun. Review and Prospect of Structure Research of Underwater Shield Tunnel with Large Cross-Section[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 1-11. doi: 10.3969/j.issn.0258-2724.2011.01.001
    [17]CHEN Weirong, QIAN Qingquan, LI Qi. Investigation Status and Development Trend of Hybrid Power Train Based on Fuel Cell[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 1-6.
    [18]PENG Qiang, ZHANG Lei, CHEN Jim X.. Overview of Error Concealment for Video Transmission[J]. Journal of Southwest Jiaotong University, 2009, 22(4): 473-483.
  • Cited by

    Periodical cited type(3)

    1. 杜承运,王建军,金浩,汤丽华. 轨下压电叠堆俘能器安装对车轨系统动力性能的影响. 振动与冲击. 2024(12): 248-259 .
    2. 李政,金浩,孙博旭. 橡胶混凝土道床车致振动能量俘获研究. 铁道标准设计. 2024(09): 53-59 .
    3. 刘继宗,张祖涛,王浩,孔苓吉,伊敏熠,朱忠尹. 城轨交通制动能量利用技术研究现状与展望. 西南交通大学学报. 2024(06): 1322-1345 . 本站查看

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.7 %FULLTEXT: 14.7 %META: 75.8 %META: 75.8 %PDF: 9.5 %PDF: 9.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.9 %其他: 18.9 %其他: 0.2 %其他: 0.2 %Central District: 0.6 %Central District: 0.6 %Kao-sung: 0.1 %Kao-sung: 0.1 %[]: 0.1 %[]: 0.1 %上海: 5.4 %上海: 5.4 %东莞: 1.1 %东莞: 1.1 %临汾: 0.1 %临汾: 0.1 %九江: 0.1 %九江: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.5 %保定: 0.5 %信阳: 0.1 %信阳: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 8.1 %北京: 8.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.7 %南京: 0.7 %南充: 0.1 %南充: 0.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.4 %南昌: 0.4 %厦门: 0.1 %厦门: 0.1 %台北: 0.1 %台北: 0.1 %合肥: 0.2 %合肥: 0.2 %唐山: 0.1 %唐山: 0.1 %商洛: 0.1 %商洛: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.3 %大连: 0.3 %大阪: 0.3 %大阪: 0.3 %天津: 2.4 %天津: 2.4 %太原: 0.1 %太原: 0.1 %威海: 0.4 %威海: 0.4 %安阳: 0.1 %安阳: 0.1 %安顺: 0.1 %安顺: 0.1 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.5 %宣城: 0.5 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.8 %广州: 0.8 %延安: 0.2 %延安: 0.2 %张家口: 1.2 %张家口: 1.2 %德阳: 0.1 %德阳: 0.1 %悉尼: 0.1 %悉尼: 0.1 %成都: 2.2 %成都: 2.2 %扬州: 0.6 %扬州: 0.6 %抚州: 0.1 %抚州: 0.1 %揭阳: 0.1 %揭阳: 0.1 %新乡: 0.1 %新乡: 0.1 %日照: 0.1 %日照: 0.1 %昆明: 0.8 %昆明: 0.8 %晋中: 0.1 %晋中: 0.1 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.0 %杭州: 1.0 %柳州: 0.1 %柳州: 0.1 %株洲: 0.1 %株洲: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.7 %武汉: 0.7 %江门: 0.3 %江门: 0.3 %池州: 0.1 %池州: 0.1 %沈阳: 0.9 %沈阳: 0.9 %沧州: 0.2 %沧州: 0.2 %泉州: 0.1 %泉州: 0.1 %泰安: 0.1 %泰安: 0.1 %洛阳: 1.0 %洛阳: 1.0 %济南: 0.4 %济南: 0.4 %淮南: 0.1 %淮南: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 1.2 %深圳: 1.2 %温州: 0.6 %温州: 0.6 %漯河: 1.6 %漯河: 1.6 %烟台: 0.1 %烟台: 0.1 %焦作: 1.3 %焦作: 1.3 %珠海: 0.1 %珠海: 0.1 %石家庄: 1.6 %石家庄: 1.6 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.1 %绵阳: 0.1 %罗马: 0.4 %罗马: 0.4 %芒廷维尤: 4.6 %芒廷维尤: 4.6 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.6 %苏州: 0.6 %莆田: 0.1 %莆田: 0.1 %葵涌: 0.1 %葵涌: 0.1 %衡水: 0.1 %衡水: 0.1 %西宁: 18.0 %西宁: 18.0 %西安: 1.1 %西安: 1.1 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 0.2 %贵阳: 0.2 %达州: 0.1 %达州: 0.1 %运城: 0.4 %运城: 0.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.5 %郑州: 1.5 %重庆: 1.4 %重庆: 1.4 %金华: 0.1 %金华: 0.1 %金昌: 0.1 %金昌: 0.1 %锦州: 0.1 %锦州: 0.1 %镇江: 0.1 %镇江: 0.1 %长春: 0.6 %长春: 0.6 %长沙: 4.7 %长沙: 4.7 %阜阳: 0.1 %阜阳: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 1.6 %青岛: 1.6 %香港: 0.1 %香港: 0.1 %黄石: 0.2 %黄石: 0.2 %其他其他Central DistrictKao-sung[]上海东莞临汾九江佛山保定信阳兰州北京十堰南京南充南宁南昌厦门台北合肥唐山商洛嘉兴大庆大连大阪天津太原威海安阳安顺宜宾宣城巴音郭楞常州常德平顶山广州延安张家口德阳悉尼成都扬州抚州揭阳新乡日照昆明晋中朝阳杭州柳州株洲格兰特县武汉江门池州沈阳沧州泉州泰安洛阳济南淮南淮安深圳温州漯河烟台焦作珠海石家庄福州秦皇岛绍兴绵阳罗马芒廷维尤芜湖芝加哥苏州莆田葵涌衡水西宁西安诺沃克贵阳达州运城邯郸郑州重庆金华金昌锦州镇江长春长沙阜阳阳泉青岛香港黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article views(1013) PDF downloads(127) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return