• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 28 Issue 2
Apr.  2015
Turn off MathJax
Article Contents
LU Xiaobing, LIU Zhigang. Applicability of Active Control Algorithms for Pantographs of High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 233-240. doi: 10.3969/j.issn.0258-2724.2015.02.005
Citation: LU Xiaobing, LIU Zhigang. Applicability of Active Control Algorithms for Pantographs of High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 233-240. doi: 10.3969/j.issn.0258-2724.2015.02.005

Applicability of Active Control Algorithms for Pantographs of High-Speed Railway

doi: 10.3969/j.issn.0258-2724.2015.02.005
  • Received Date: 02 Jan 2014
  • Publish Date: 25 Apr 2015
  • In order to seek the best active control algorithms for different pantographs, an efficient pantograph-catenary model was established, based on which an optimal controller, a variable structure controller, and a fuzzy controller were designed. A simulation was then conducted by applying the control algorithms to the widely used pantographs SBS81, DSA250, DSA380 and SSS400+ in high-speed railway, and the control algorithms were compared in terms of the maximum, minimum, mean and standard deviation of the contact force before and after controllers applied to the pantographs. The results show that, when the locomotive speed is operated with a simple stitched catenary at 250 km/h, the contact force standard deviation is reduced by 34.4% and 18.6% respectively for the SBS81 and DSA380 equipped with variable structure control. However, the standard deviation is just reduced by 12.7% and 10.0% if the optimal control is applied to them. For DSA250, the standard deviation of contact force is reduced by 25.7% under the optimal control, but only 14.8% under the variable structure control. For SSS400+, the contact force standard deviation is reduced by 38.1% when it is equipped with fuzzy control. Therefore, the variable structure control is more suitable for SBS81and DSA380, the optimal control is more suitable for DSA250, and the fuzzy control is more suitable for SSS400+.

     

  • loading
  • 韩志伟,刘志刚,张桂南,等. 非接触式弓网图像检测技术研究综述
    POETSCH G, EVANS J, MEISINGER R, et al. Pantograph-catenary dynamics and control
    [J]. 铁道学报,2013,35(6): 40-47. HAN Zhiwei, LIU Zhigang, ZHANG Guinan, et al. Overview of non-contact image detection technology for pantograph-catenary monitoring
    [J]. Journal of the China Railway Society, 2013, 35(6): 40-47.
    LIN Y, LIN C, YANG C. Robust active vibration control for rail vehicle pantograph
    TIERI R. Innovative active control strategies for pantograph catenary interactionp
    [J]. Vehicle System Dynamics, 1997, 28(2): 159-195.
    郭京波,杨绍普,高国生. 变刚度弓网系统主动控制研究
    杨岗,李芾. 基于LQR的高速受电弓最优半主动控制研究
    [J]. IEEE Transactions on Vehicular Technology, 2007, 56(4): 1994-2004.
    PISANO A, USAI E. Contact force regulation in wire-actuated pantographs via variable structure control and frequency-domain techniques
    BARTOLINI G, PISANO A, PUNTA E, et al. A survey of applications of second-order sliding mode control to mechanical systems
    杨岗,李芾. 高速受电弓滑膜半主动控制
    [D]. Stockholm: Royal Institute of Technology, 2012.
    吴学杰,张卫华,梅桂明,等. 接触网-受电弓振动主动控制问题的研究
    [J]. 振动与冲击,2005,24(2): 9-11. GUO Jingbo, YANG Shaopu, GAO Guosheng. Research on active control of the pantograph-catenary system with varying stiffness
    吴燕. 高速受电弓-接触网动态性能及主动控制策略的研究
    [J]. Journal of Vibration and Shock, 2005, 24(2): 9-11.
    ALLOTTA B, PUGI L, BARTOLINI F. An active suspension system for railway pantographs: the T2006 prototype
    PISANO A, USAI E. Contact force estimation and regulation in active pantographs: an algebraic observability approach
    刘金琨. 滑模变结构控制MATLAB仿真
    [J]. 铁道学报,2011,33(11): 34-40. YANG Gang, LI Fu. Semi-active control for high-speed pantograph based on optimal LQR regulator
    [J]. Journal of the China Railway Society, 2011, 33(11): 34-40.
    韩志伟.高速铁路弓网动态特性现代谱评估及故障图像智能识别
    鲁小兵,刘志刚,宋洋,等. 受电弓主动控制综述
    [J]. International Journal of Control, 2008, 81(11): 1747-1762.
    [J]. International Journal of Control, 2003, 76(9/10): 875-892.
    [J]. 西南交通大学学报,2013,48(1): 10-16. YANG Gang, LI Fu. Sliding mode semi-active control for high-speed pantograph
    [J]. Journal of Southwest Jiaotong University, 2013, 48(1): 10-16.
    [J]. 振动工程学报,2002,15(1): 40-44. WU Xuejie, ZHANG Weihua, MEI Guiming, et al. Research of active vibration control for the pantograph-catenary system
    [J]. Journal of Vibration Engineering, 2002, 15(1): 40-44.
    [D]. 北京:北京交通大学,2011.
    [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(1): 15-29.
    [C]//46th IEEE Conference on Decision and Control. New Orleans: IEEE, 2007: 4341-4346.
    [M]. 2版.北京:清华大学出版社,2012: 41.
    [D]. 成都:西南交通大学,2013.
    [J]. 交通运输工程学报,2014, 14(2): 49-61. LU Xiaobing, LIU Zhigang, SONG Yang, et al. Review of pantograph active control
    [J]. Journal of Traffic and Transportation Engineering, 2014, 14(2):49-61.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(985) PDF downloads(583) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return