• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LIU Hao, XIE Kaize, WANG Ping, XIAO Jieling, CHEN Rong. Effect of Regional Distribution and Degradation of Ballast Resistance on Longitudinal Force of Rail[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 98-105. doi: 10.3969/j.issn.0258-2724.2017.01.014
Citation: LIU Hao, XIE Kaize, WANG Ping, XIAO Jieling, CHEN Rong. Effect of Regional Distribution and Degradation of Ballast Resistance on Longitudinal Force of Rail[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 98-105. doi: 10.3969/j.issn.0258-2724.2017.01.014

Effect of Regional Distribution and Degradation of Ballast Resistance on Longitudinal Force of Rail

doi: 10.3969/j.issn.0258-2724.2017.01.014
  • Received Date: 18 May 2015
  • Publish Date: 25 Feb 2017
  • In order to explore the effect of ballast resistance evolution on the mechanical behavior of the continuously welded rail (CWR) on bridge, tests were conducted for the longitudinal and lateral ballast resistances on bridge and roadbed sections. Taking an example of an extra-large double-line continuous beam bridge commonly used in railway, the track resistance distribution characteristics on bridge were obtained, and the local ballast resistance degradation was discovered in the ballast service. On this basis, the longitudinal mechanics behavior model of CWR on bridge was established, which takes into account the non-uniform distribution and degradation of ballast resistance. The results show that the distribution of ballast longitudinal resistance on bridge shows significant regional distribution characteristics, the maximum longitudinal resistance was 31.8 kN per sleeper at the central span of bridge, and the longitudinal resistance near the beam joint was relatively small, 21.7 kN per sleeper, demonstrating obvious ballast resistance degradation. The lateral resistance distribution on bridge also has moderate regional distribution characteristics, the lateral resistance at the central span of bridge was 31.7 kN per sleeper and the lateral resistance near the beam joint was 25.5 kN per sleeper, while the degradation does not obvious. As thermal load leads to beam expansions and the dynamic loads of trains cause bridge vibration displacement and rotation angles at the beam support, the crushed-stone ballast dynamically changes between tension and compression, and the ballast resistance shows obvious degradation characteristics. When there is ballast resistance degradation, the rail longitudinal force, rail displacement and relative displacement between bridge and track under thermal loading has a certain attenuation. Thus, the maximum rail longitudinal additional force with the temperature span of 140 m was reduced by about 11.7%, and the attenuation rate increases linearly with the increase of temperature span. The beam-rail interaction is relatively large if it is calculated according to specifications.

     

  • 王平,刘浩,魏贤奎. 铁路斜拉桥上无缝线路纵向力规律分析[J]. 交通运输工程学报,2013,13(5):27-31. WANG Ping, LIU Hao, WEI Xiankui. Analysis on longitudinal force regulations of CWR on railway cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5):27-31.
    CHEN R, WANG P, WEI X K. Track-bridge longitudinal interaction of continuous welded rails on arch bridge[J]. Mathematical Problems in Engineering, 2013(3):237-245.
    谢铠泽,王平. 桥上单元板式无砟轨道无缝线路的适应性[J]. 西南交通大学学报,2014,49(8):649-655. XIE Kaize, WANG Ping. Adaptability of continuous welded rail of unit slab non-ballast track on bridges[J]. Journal of Southwest Jiaotong University, 2014, 49(8):649-655.
    高亮,杨文茂,曲村,等. 高速铁路长大桥梁CRTSI型板式无砟轨道无缝线路的动力特性[J]. 北京交通大学学报,2013,37(1):73-79. GAO Liang, YANG Wenmao, QU Cun, et al. Dynamic characteristics of CRTSI slab CWR track on long-span bridge in high-speed railway[J]. Journal of Beijing Jiaotong University, 2013, 37(1):73-79.
    RUGE P, BIRK C. Longitudinal forces in continuously welded rails on bridge decks due to nonlinear track bridge interaction[J]. Computers Structures, 2007, 85(7/8):458-475.
    闫斌,戴公连. 考虑加载历史的高速铁路梁轨相互作用分析[J]. 铁道学报,2014,36(6):75-80. YAN Bin, DAI Gonglian. Analysis of interaction between continuously-welded rail and high-speed railway bride considering loading-history[J]. Journal of the China Railway Society, 2014, 36(6):75-80.
    徐庆元,陈秀方. 连续梁桥上无缝线路附加力研究[J]. 中国铁道科学,2003,24(3):58-63. XU Qingyuan, CHEN Xiufang. Study on additional force transmission between continuously welded rails and continuous beam bridge[J]. China Railway Science, 2003, 24(3):58-63.
    王平,万复光. 铁路碎石道床弹性特性研究初探[J]. 铁道学报,1997,19(8):108-113. WANG Ping, WAN Fuguang. Research on the elasticity of ballast[J]. Journal of the China Railway Society, 1997, 19(8):108-113.
    赵志军,邵天宝. 桥上无缝线路附加力影响参数[J]. 交通运输工程学报,2003,3(9):32-35. ZHAO Zhijun, SHAO Tianbao. Influence parameters of additional longitudinal force of continuously welded rails on bridge[J]. Journal of Traffic and Transportation Engineering, 2003, 3(9):32-35.
    曾树谷. 铁路散粒体道床[M]. 北京:中国铁道出版社,1997:134-156.
    陈小平,王平,吕关仁. 大型养路机械清筛和维修作业对道床阻力的影响[J]. 铁道建筑,2010,50(7):24-29. CHEN Xiaoping, WANG Ping, L Guanren. Effect of sieve cleaning and maintenance of large track maintenance machine on ballast resistance[J]. Raily Engineering, 2010, 50(7):24-29.
    KEROKOSKI O. Determination of longitudinal and transverse railway track resistance[J]. Joint Rail Conference, 2010:157-165.
    INDRARATNA B, THAKUR P K, VINOD J S. Experimental and numerical study of railway ballast behavior under cyclic loading[J]. International Journal of Geomechanics, 2010(10):136-144.
    杨艳丽. Ⅲ型混凝土轨枕有砟道床纵横向阻力设计参数试验研究[J]. 铁道工程学报,2010,27(10):49-51. YANG Yanli. Experimental study on design parameters of longitudinal and lateral resistance of ballast bed for Ⅲ-type concrete sleeper[J]. Journal of Railway Engineering Society, 2010, 27(10):49-51.
    高亮,范俊杰,刘秀波. 散体道床流变力学特性的研究[J]. 铁道学报,2001,23(1):85-89. GAO Liang, FAN Junjie, LIU Xiubo. Resarch on rheologic mechanics characteristics of crushed stone ballast[J]. Journal of the China Railway Society, 2001, 23(1):85-89.
    肖宏,高亮,侯博文. 基于离散元分析的高速铁路桥上轨枕选型[J]. 西南交通大学学报,2015,50(5):811-816. XIAO Hong, GAO Liang, HOU Bowen. 3D discrete element analysis of selection of sleeper types on high-speed railway bridge[J]. Journal of Southwest Jiaotong University, 2015, 50(5):811-816.
    高亮,罗奇,徐旸,等. 道床断面尺寸对道床横向阻力的影响[J]. 西南交通大学学报,2014,49(6):954-960. GAO Liang, LUO Qi, XU Yang, et al. Effects of ballast bed section dimension on its lateral resistance[J]. Journal of Southwest Jiaotong University, 2014, 49(6):954-960.
    中华人民共和国铁道部. TB 10015-2012铁路无缝线路设计规范[S]. 北京:中国铁道出版社,2013.
  • Relative Articles

    [1]CAI Xiaopei, WANG Changchang, DONG Bo, CHEN Zelin, ZHANG Qian. Analysis of Longitudinal Force Distribution Characteristics and Arching Mechanism of Longitudinally Connected Track Slabs in Bridge-Subgrade Transition Section[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 580-588. doi: 10.3969/j.issn.0258-2724.20230424
    [2]GUO Yunlong, WANG Xinyu, LIAN Dong, WAN Hongyu, JING Guoqing. Lateral Resistance of Frictional Sleeper Ballast Bed[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 301-305, 368. doi: 10.3969/j.issn.0258-2724.20200464
    [3]JING Guoqing, WANG Xinyu, ZHOU Qiang, YAO Li. Experiments Study on Longitudinal and Lateral Resistance of Steel Rod Reinforced Sleeper[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1192-1196, 1213. doi: 10.3969/j.issn.0258-2724.20191215
    [4]ZHANG Pengfei, GUI Hao, LEI Xiaoyan. Expansion-Constriction Force Characteristics of Continuously Rails on Bridge under Fracture Condition of CRTS Ⅱ Track Slab Welded[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1036-1043. doi: 10.3969/j.issn.0258-2724.20180944
    [5]JING Guoqing, JIA Wenli, QIANG Weile, LU Wei. Ladder Sleeper Lateral Resistance Test and Contribution Analysis of Ballasted Track[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 9-13. doi: 10.3969/j.issn.0258-2724.20170481
    [6]JING Guoqing, JIA Wenli, FU Hao, LU Wei. High-Speed Ballasted Railway Track Lateral Resistance Characteristics and Reinforcements[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1087-1092. doi: 10.3969/j.issn.0258-2724.20170480
    [7]CUI Chuang, BU Yizhi, LI Jun, ZHANG Qinghua. Distribution Characteristics of Welding Residual Stress at U Deck-to-Rib Connection Detail of Steel Box Girder[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 260-265. doi: 10.3969/j.issn.0258-2724.2018.02.006
    [8]JING Guoqing, FU Hao, JIA Wenli, YAO Li, LIN Hongsong. Experimental Study on Lateral Resistance of Optimized Ⅲc Sleeper with Different Frame Types[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 727-732. doi: 10.3969/j.issn.0258-2724.2018.04.009
    [9]XIAO Hong, LING Xing. Experiment and DEM Analysis of Lateral Resistance of Glued Ballast[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1046-1054. doi: 10.3969/j.issn.0258-2724.2017.06.002
    [10]ZHANG Xun, SU Bin, LI Xiaozhen, ZHANG Jianqiang. Special Longitudinal Forces between Continuous Welded Rail and Long-Span Simply Supported Beam Bridge with High Piers and Their Influences[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 57-64. doi: 10.3969/j.issn.0258-2724.2016.01.009
    [11]WANG Biao, XIE Kaize, XIAO Jieling, WANG Ping. Test Principle and Test Scheme of Longitudinal Force in Continuous Welded Rail Using Resistance Strain Gauge[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 43-49. doi: 10.3969/j.issn.0258-2724.2016.01.007
    [12]XIE Kaize, WANG Ping, XU Jingmang, XU Hao. Adaptability of Continuous Welded Rail of Unit Slab Non-ballast Track on Bridges[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 649-655. doi: 10.3969/j.issn.0258-2724.2014.04.014
    [13]GAO Liang, LUO Qi, XU Yang, JIANG Hanke, QU Cun. Effects of Ballast Bed Section Dimension on Its Lateral Resistance[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 954-960. doi: 10.3969/j.issn.0258-2724.2014.06.004
    [14]ZHAO Weihua, WANG Ping, CAO Yang. Calculation of Braking Force of Continuous Welded Rail on Large-Span Steel Truss Cable-Stayed Bridge[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 361-366. doi: 10.3969/j.issn.0258-2724.2012.03.002
    [15]YANG Rongshan, LIU Xueyi, WANG Ping. Analysis of Factors Influencing Longitudinal Force of Welded Turnout on Simply Supported Beam Bridge[J]. Journal of Southwest Jiaotong University, 2008, 21(5): 666-672.
    [16]WANG Ping. Mechanism of Longitudinal Force Transmission of Welded Turnouts with Different Structures[J]. Journal of Southwest Jiaotong University, 2003, 16(4): 371-374.
    [17]CAI Cheng-biao. Calculation of Additional Longitudinal Forces in Continuously Welded Rails on Supper-Large Bridges of High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 609-614.
    [18]WANG Ping, LIUXue-yi. An Analysis of the Stability of Tracks with Frozen Joints[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 460-464.
  • Cited by

    Periodical cited type(4)

    1. 王元浩,杨希,王波,郭利康,杨荣山,周智强. 32 m简支梁顶梁作业对有砟轨道无缝线路状态的影响. 铁道建筑. 2023(01): 36-40 .
    2. 邵壮,孙井林,陈学振,刘郑琦. 新型臂展式轨枕和Ⅲc型轨枕横向阻力试验和仿真研究. 铁道勘察. 2022(05): 100-103+124 .
    3. 井国庆,贾文利,付豪,卢炜. 高速铁路有砟道床横向阻力特性与固化技术. 西南交通大学学报. 2019(05): 1087-1092 . 本站查看
    4. 罗锟,汪振国,雷晓燕. 城市轨道交通连续桩板结构上无缝线路纵向力分析. 铁道科学与工程学报. 2019(11): 2692-2698 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.2 %FULLTEXT: 28.2 %META: 71.8 %META: 71.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.7 %其他: 5.7 %Central District: 0.5 %Central District: 0.5 %Valencia: 0.5 %Valencia: 0.5 %上海: 0.5 %上海: 0.5 %东莞: 0.3 %东莞: 0.3 %临汾: 0.5 %临汾: 0.5 %北京: 3.4 %北京: 3.4 %南京: 0.3 %南京: 0.3 %南昌: 0.8 %南昌: 0.8 %哥伦布: 0.5 %哥伦布: 0.5 %天津: 0.8 %天津: 0.8 %常州: 0.3 %常州: 0.3 %张家口: 7.3 %张家口: 7.3 %成都: 1.3 %成都: 1.3 %杭州: 0.5 %杭州: 0.5 %格兰特县: 0.5 %格兰特县: 0.5 %武汉: 0.5 %武汉: 0.5 %池州: 0.5 %池州: 0.5 %洛阳: 0.3 %洛阳: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.3 %温州: 0.3 %漯河: 1.0 %漯河: 1.0 %石家庄: 4.2 %石家庄: 4.2 %芒廷维尤: 11.2 %芒廷维尤: 11.2 %芝加哥: 0.5 %芝加哥: 0.5 %西宁: 54.3 %西宁: 54.3 %郑州: 1.6 %郑州: 1.6 %长沙: 1.6 %长沙: 1.6 %其他Central DistrictValencia上海东莞临汾北京南京南昌哥伦布天津常州张家口成都杭州格兰特县武汉池州洛阳深圳温州漯河石家庄芒廷维尤芝加哥西宁郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(627) PDF downloads(253) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return