Loading [MathJax]/jax/output/SVG/jax.js
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
SHAO Yongbo, ZHU Hongmei, YANG Dongping. Static Bearing Capacity Analysis of CFRP-Reinforced Short CHS Steel Tubular Columns under Axial Compression[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 167-174. doi: 10.3969/j.issn.0258-2724.20180527
Citation: HUANG Lin, DONG Jiahui, WANG Qi, LIAO Haili. Influence of Maintenance Rail Position and Guide Vanes on Vortex-Induced Vibration Performance of Flat Box Girders[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 535-545. doi: 10.3969/j.issn.0258-2724.20210474

Influence of Maintenance Rail Position and Guide Vanes on Vortex-Induced Vibration Performance of Flat Box Girders

doi: 10.3969/j.issn.0258-2724.20210474
  • Received Date: 17 Jun 2021
  • Rev Recd Date: 23 Sep 2021
  • Available Online: 03 Jan 2023
  • Publish Date: 29 Sep 2021
  • To study the influence of the maintenance rail position and the guide vanes on the vortex-induced vibration (VIV) performance of the wide flat box girder section, the Lingdingyang Bridge (a long-span suspension bridge with wide flat steel box girder) is taken as an example. The VIV of the main girder is studied using a 1∶25 scale section model wind tunnel test, and the two-dimensional flow field of the cross section is simulated using computational fluid dynamics. The test results show that increasing l (the distance between the maintenance rail and the bottom edge of the main girder) can significantly improve the VIV performance of a wide flat box girder. When lWb/6 (Wb is the bottom width of the main girder), the VIV of the girder can be completely eliminated under different wind attack angles. Installing a guide vane with a 17° angle inside or on both sides of the maintenance rail can significantly suppress the VIV of the girder, and the suppression effect is the same. When lWb/10, the installation of the guide vane can completely eliminate the VIV of the girder. The numerical simulation results show that increasing the distance between the maintenance rail and the bottom edge of the girder and setting a guide vane can both significantly reduce the periodic vortex-induced force of the main girder by eliminating the wake vortex at the inclined web downstream of the section, thereby suppressing the VIV of the girder.

     

  • [1]
    政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005.
    [2]
    管青海,李加武,胡兆同,等. 栏杆对典型桥梁断面涡激振动的影响研究[J]. 振动与冲击,2014,33(3): 150-156. doi: 10.3969/j.issn.1000-3835.2014.03.029

    GUAN Qinghai, LI Jiawu, HU Zhaotong, et al. Effects of railings on vortex-induced vibration of a bridge deck section[J]. Journal of Vibration and Shock, 2014, 33(3): 150-156. doi: 10.3969/j.issn.1000-3835.2014.03.029
    [3]
    李春光,陈政清,韩阳. 带悬挑人行道板流线型箱梁涡振性能研究[J]. 振动与冲击,2014,33(24): 19-25. doi: 10.13465/j.cnki.jvs.2014.24.004

    LI Chunguang, CHEN Zhengqing, HAN Yang. Vortex induced vibration performance of a streamlined box girder with a cantilevered walking slab[J]. Journal of Vibration and Shock, 2014, 33(24): 19-25. doi: 10.13465/j.cnki.jvs.2014.24.004
    [4]
    杨阳,张亮亮,吴波,等. 宽体扁平钢箱梁气动力特性及涡振性能研究[J]. 桥梁建设,2016,46(1): 70-75.

    YANG Yang, ZHANG Liangliang, WU Bo, et al. Study of aerodynamic characteristics and vortex-induced vibration performance of wide flat steel box girder[J]. Bridge Construction, 2016, 46(1): 70-75.
    [5]
    LARSEN A, WALL A. Shaping of bridge box girders to avoid vortex shedding response[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104/105/106: 159-165.
    [6]
    LARSEN A, ESDAHL S, ANDERSEN J E, et al. Storebælt suspension bridge-vortex shedding excitation and mitigation by guide vanes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2/3): 283-296.
    [7]
    NAGAO F, UTSUNOMIYA H, YOSHIOKA E, et al. Effects of handrails on separated shear flow and vortex-induced oscillation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69/70/71: 819-827.
    [8]
    CHEN Z S, LIU S M, YU X F, et al. Experimental investigations on VIV of bridge deck sections: a case study[J]. KSCE Journal of Civil Engineering, 2017, 21(7): 2821-2827. doi: 10.1007/s12205-017-0120-1
    [9]
    ZHAN J, XIN D B, OU J P, et al. Experimental study on suppressing vortex-induced vibration of a long-span bridge by installing the wavy railings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202(8): 104205.1-104205.13.
    [10]
    李浩弘,吴波,张亮亮,等. 基于风洞试验及大涡模拟的宽体扁平箱梁涡振特性研究与优化[J]. 建筑结构学报,2018,39(增1): 29-35. doi: 10.14006/j.jzjgxb.2018.S1.005

    LI Haohong, WU Bo, ZHANG Liangliang, et al. Investigation and optimization on VIV performances of wide flat box girders based on wind tunnel tests and large eddy simulations[J]. Journal of Building Structures, 2018, 39(S1): 29-35. doi: 10.14006/j.jzjgxb.2018.S1.005
    [11]
    张建,郑史雄,唐煜,等. 基于节段模型试验的悬索桥涡振性能优化研究[J]. 实验流体力学,2015,29(2): 48-54. doi: 10.11729/syltlx20140037

    ZHANG Jian, ZHENG Shixiong, TANG Yu, et al. Research on optimizing vortex-induced vibration performance for suspension bridge based on section model test[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2): 48-54. doi: 10.11729/syltlx20140037
    [12]
    刘君,廖海黎,万嘉伟,等. 检修车轨道导流板对流线型箱梁涡振的影响[J]. 西南交通大学学报,2015,50(5): 789-795. doi: 10.3969/j.issn.0258-2724.2015.05.004

    LIU Jun, LIAO Haili, WAN Jiawei, et al. Effect of guide vane beside maintenance rail on vortex-induced vibration of streamlined box girder[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 789-795. doi: 10.3969/j.issn.0258-2724.2015.05.004
    [13]
    李明,孙延国,李明水,等. 宽幅流线型箱梁涡振性能及制振措施研究[J]. 西南交通大学学报,2018,53(4): 712-719. doi: 10.3969/j.issn.0258-2724.2018.04.007

    LI Ming, SUN Yanguo, LI Mingshui, et al. Vortex-induced vibration performance of wide streamlined box girder and aerodynamic countermeasure research[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 712-719. doi: 10.3969/j.issn.0258-2724.2018.04.007
    [14]
    LI M, SUN Y G, JING H M, et al. Vortex-induced vibration optimization of a wide streamline box girder by wind tunnel test[J]. KSCE Journal of Civil Engineering, 2018, 22(12): 5143-5153. doi: 10.1007/s12205-018-0548-y
    [15]
    朱思宇,李永乐,申俊昕,等. 大攻角来流作用下扁平钢箱梁涡振性能风洞试验优化研究[J]. 土木工程学报,2015,48(2): 79-86. doi: 10.15951/j.tmgcxb.2015.02.012

    ZHU Siyu, LI Yongle, SHEN Junxin, et al. Optimization of vortex-induced vibration of flat steel box girders at large attack angle by wind tunnel test[J]. China Civil Engineering Journal, 2015, 48(2): 79-86. doi: 10.15951/j.tmgcxb.2015.02.012
    [16]
    孙延国,廖海黎,李明水. 基于节段模型试验的悬索桥涡振抑振措施[J]. 西南交通大学学报,2012,47(2): 218-223,264. doi: 10.3969/j.issn.0258-2724.2012.02.008

    SUN Yanguo, LIAO Haili, LI Mingshui. Mitigation measures of vortex-induced vibration of suspension bridge based on section model test[J]. Journal of Southwest Jiaotong University, 2012, 47(2): 218-223,264. doi: 10.3969/j.issn.0258-2724.2012.02.008
    [17]
    胡传新,赵林,周志勇,等. 流线型闭口箱梁抑流板抑制涡振机理研究[J]. 振动工程学报,2020,33(1): 1-11. doi: 10.16385/j.cnki.issn.1004-4523.2020.01.001

    HU Chuanxin, ZHAO Lin, ZHOU Zhiyong, et al. Suppressing mechanism of spoilers on vortex-induced vibrations around a streamlined closed-box girder based on characteristics of aerodynamics forces and flow field[J]. Journal of Vibration Engineering, 2020, 33(1): 1-11. doi: 10.16385/j.cnki.issn.1004-4523.2020.01.001
    [18]
    HU C X, ZHAO L, GE Y J. Mechanism of suppression of vortex-induced vibrations of a streamlined closed-box girder using additional small-scale components[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 189: 314-331. doi: 10.1016/j.jweia.2019.04.015
    [19]
    SCHEWE G, LARSEN A. Reynolds number effects in the flow around a bluff bridge deck cross section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74/75/76: 829-838.
    [20]
    SCHEWE G. Reynolds-number effects in flow around more-or-less bluff bodies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14/15): 1267-1289.
    [21]
    胡传新,赵林,陈海兴,等. 流线闭口箱梁涡振气动力的雷诺数效应研究[J]. 振动与冲击,2019,38(12): 118-125. doi: 10.13465/j.cnki.jvs.2019.12.017

    HU Chuanxin, ZHAO Lin, CHEN Haixing, et al. Reynolds number effects on aerodynamic forces of a streamlined closed-box girder during vortex-induced vibrations[J]. Journal of Vibration and Shock, 2019, 38(12): 118-125. doi: 10.13465/j.cnki.jvs.2019.12.017
    [22]
    SCANLAN R H. Observations on low-speed aeroelasticity[J]. Journal of Engineering Mechanics, 2002, 128(12): 1254-1258. doi: 10.1061/(ASCE)0733-9399(2002)128:12(1254)
    [23]
    李加武,张宏杰,韩万水. 斜拉桥风致响应的雷诺数效应[J]. 中国公路学报,2009,22(2): 42-47. doi: 10.3321/j.issn:1001-7372.2009.02.008

    LI Jiawu, ZHANG Hongjie, HAN Wanshui. Wind-induced response of cable-stayed bridge with consideration of Reynolds number effect[J]. China Journal of Highway and Transport, 2009, 22(2): 42-47. doi: 10.3321/j.issn:1001-7372.2009.02.008
    [24]
    熊龙,孙延国,廖海黎. 钢箱梁在高低雷诺数下的涡振特性研究[J]. 桥梁建设,2016,46(5): 65-70.

    XIONG Long, SUN Yanguo, LIAO Haili. Study of vortex-induced vibration characteristics of steel box girder at high and low Reynolds numbers[J]. Bridge Construction, 2016, 46(5): 65-70.
    [25]
    董浩天,葛耀君,杨詠昕. 闭口钢箱梁悬索桥涡振多尺度模型风洞试验[J]. 结构工程师,2018,34(4): 94-100. doi: 10.3969/j.issn.1005-0159.2018.04.014

    DONG Haotian, GE Yaojun, YANG Yongxin. Multi-scale model tests of vortex-induced vibration of a suspension bridge with closed steel box girders[J]. Structural Engineers, 2018, 34(4): 94-100. doi: 10.3969/j.issn.1005-0159.2018.04.014
    [26]
    任若松,梁新华,刘小兵,等. 准流线型桥梁断面气动力特性的雷诺数效应研究[J]. 工程力学,2020,37(增1): 139-144,167.

    REN Ruosong, LIANG Xinhua, LIU Xiaobing, et al. Study on Reynolds number effect of aerodynamic characteristics of quasi-streamlined bridge section[J]. Engineering Mechanics, 2020, 37(S1): 139-144,167.
    [27]
    交通运输部. 公路桥梁抗风设计规范: JTG/T 3360-01—2018[S]. 北京: 人民交通出版社, 2018.
    [28]
    MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [29]
    熊龙,廖海黎,李明水,等. 马普托桥颤振稳定性的风洞试验研究[J]. 防灾减灾工程学报,2017,37(2): 321-326. doi: 10.13409/j.cnki.jdpme.2017.02.021

    XIONG Long, LIAO Haili, LI Mingshui, et al. Wind tunnel test study on flutter stability of Maputo bridge[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(2): 321-326. doi: 10.13409/j.cnki.jdpme.2017.02.021
  • Relative Articles

    [1]YANG Meng, WANG Yunfei, ZHAO Jiabin, ZHOU Jing, WANG Yongjing, LI Yongle. Vortex-Induced Vibration Response of Bridges Considering Both Spanwise Variation of Vibration Amplitude and Correlation of Aerodynamic Forces[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 45-52. doi: 10.3969/j.issn.0258-2724.20220714
    [2]HUANG Lin, DONG Jiahui, LIAO Haili, PU Shiyu, WANG Qi. Vortex-Induced Vibration (VIV) Aerodynamic Measures of Girder with Side Beam Based on Computation Fluid Dynamics (CFD) and Wind Tunnel Test[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 343-352. doi: 10.3969/j.issn.0258-2724.20220208
    [3]LI Yongle, PAN Junzhi, TI Zilong, RAO Gang. Inversion Method of Vortex-Induced Vibration Amplitude for Long-Span Bridges with Partially Installed Noise Barrier[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 183-190. doi: 10.3969/j.issn.0258-2724.20210172
    [4]LEI Yongfu, LI Ming, SUN Yanguo, LI Mingshui. Experimental Study on Flutter Performance of Long-Span Suspension Bridge with Double-Deck Truss Girder[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.20200599
    [5]LI Chunguang, MAO Yu, YAN Hubin, LIANG Aihong, HAN Yan. Experimental Study on Vortex-Induced Vibration Performance and Countermeasures for Side Girder Beam with Conveyer[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 886-893. doi: 10.3969/j.issn.0258-2724.20210224
    [6]JI Wei, SHAO Tianyan. Finite Element Model Updating of Box Girder Bridges with Corrugated Steel Webs[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 1-11. doi: 10.3969/j.issn.0258-2724.20191198
    [7]LIN Siyuan, LIAO Haili, WANG Qi, XIONG Long. Effects of Oscillation Amplitude on Nonlinear Motion-Induced Force for 5 ∶ 1 Rectangular Cylinder[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 249-259. doi: 10.3969/j.issn.0258-2724.20170573
    [8]LI Tian, QIN Deng, AN Chao, ZHANG Jiye. Effect of Computational Grid on Uncertainty in Train Aerodynamics[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 816-822. doi: 10.3969/j.issn.0258-2724.20180503
    [9]MA Cunming, WANG Junxin, LUO Nan, LI Hongjiu, LIAO Haili. Vortex-Induced Vibration Performance and Control Measures of Wide Twin-Box Girder[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 724-730. doi: 10.3969/j.issn.0258-2724.20161029
    [10]LI Ming, SUN Yanguo, LI Mingshui, WU Bo. Vortex-Induced Vibration Performance of Wide Streamlined Box Girder and Aerodynamic Countermeasure Research[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 712-719. doi: 10.3969/j.issn.0258-2724.2018.04.007
    [11]XIONG Long, LIAO Haili, WANG Qi, MA Cunming. Analytic Identification of Bridge Nonlinear Motion-Induced Aerodynamic Parameter[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 824-831. doi: 10.3969/j.issn.0258-2724.2016.05.002
    [12]LIU Jun, LIAO Haili, WAN Jiawei, MA Cunming. Effect of Guide Vane beside Maintenance Rail on Vortex-Induced Vibration of Streamlined Box Girder[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 789-795. doi: 10.3969/j.issn.0258-2724.2015.05.004
    [13]LUO Gang, ZHOU Xiaojun. Vortex-Induced Fatigue Damage Analysis of Submerged Floating Tunnel Cable[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 642-648. doi: 10.3969/j.issn.0258-2724.2014.04.013
    [14]ZHANG Zhengwei, QUAN Yong, GU Ming, XIONG Yong. Aerodynamic Characteristics of Tapered Tall Buildings with Square Section[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 772-778. doi: 10.3969/j.issn.0258-2724.2014.05.005
    [15]QIN Hao, LIAO Haili, LI Mingshui. Vortex-Induced Vibration of Continuous Steel Box-Girder Bridge with Variable Cross-Sections at Typical Erection Stages[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 760-765,786. doi: 10.3969/j.issn.0258-2724.2014.05.003
    [16]WANG Qi, LIAO Haili, LI Mingshui, MA Cunming. Empirical Mathematical Model for Nonlinear Motion-Induced Aerodynamic Force of Bridge Girder[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 271-277. doi: 10.3969/j.issn.0258-2724.2013.02.013
    [17]SUN Yanguo, LIAO Haili, LI Mingshui. Mitigation Measures of Vortex-Induced Vibration of Suspension Bridge Based on Section Model Test[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 218-223. doi: 10.3969/j.issn.0258-2724.2012.02.008
    [18]XIAN Rong, LIAO Haili, LI Mingshui. Calculation of Spanwise Vortex-Induced Vibration Responses of Long-Span Bridge Girder[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 740-746.
    [19]LUGui-chen, ZHANGHong-fen, YANG Yong-xi, GE Yao-jun. Cross Section Aerodynam ic Optim ization of SteelBox G irder in X ihoumen Suspension Bridge Prelim inary Design[J]. Journal of Southwest Jiaotong University, 2005, 18(4): 473-477.
    [20]LIU Shan-hong, HE Guang-han. Test Study on Segmental Model of a PPC Box Girder[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 491-494.
  • Cited by

    Periodical cited type(3)

    1. 张艺,李欢,魏高翔,何旭辉,谢祖育. 高铁大跨扁平箱梁桥涡振性能及抑振措施研究. 中南大学学报(自然科学版). 2025(02): 560-574 .
    2. 段青松,马存明. 检修车轨道对窄幅流线型箱梁涡振性能影响研究. 桥梁建设. 2024(01): 88-94 .
    3. 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2024. 中国公路学报. 2024(12): 1-160 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.1 %FULLTEXT: 25.1 %META: 69.5 %META: 69.5 %PDF: 5.4 %PDF: 5.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.1 %其他: 8.1 %其他: 0.4 %其他: 0.4 %Scranton: 0.2 %Scranton: 0.2 %Seattle: 0.4 %Seattle: 0.4 %[]: 0.4 %[]: 0.4 %上海: 1.3 %上海: 1.3 %东莞: 0.4 %东莞: 0.4 %临汾: 0.4 %临汾: 0.4 %九江: 0.2 %九江: 0.2 %北京: 9.3 %北京: 9.3 %十堰: 0.2 %十堰: 0.2 %南京: 1.8 %南京: 1.8 %台州: 0.5 %台州: 0.5 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.7 %哥伦布: 0.7 %嘉兴: 0.2 %嘉兴: 0.2 %圣安东尼奥: 0.2 %圣安东尼奥: 0.2 %夏延: 0.4 %夏延: 0.4 %大连: 0.2 %大连: 0.2 %天津: 1.3 %天津: 1.3 %宣城: 0.5 %宣城: 0.5 %常德: 0.2 %常德: 0.2 %广州: 0.4 %广州: 0.4 %廊坊: 0.2 %廊坊: 0.2 %张家口: 2.0 %张家口: 2.0 %成都: 2.7 %成都: 2.7 %扬州: 0.2 %扬州: 0.2 %揭阳: 0.2 %揭阳: 0.2 %曼谷: 0.2 %曼谷: 0.2 %杭州: 0.2 %杭州: 0.2 %武汉: 0.2 %武汉: 0.2 %池州: 0.7 %池州: 0.7 %沈阳: 0.4 %沈阳: 0.4 %洛阳: 0.4 %洛阳: 0.4 %温州: 0.5 %温州: 0.5 %湖州: 0.2 %湖州: 0.2 %漯河: 1.4 %漯河: 1.4 %烟台: 0.2 %烟台: 0.2 %石家庄: 0.7 %石家庄: 0.7 %纽约: 0.2 %纽约: 0.2 %芒廷维尤: 15.1 %芒廷维尤: 15.1 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.2 %苏州: 0.2 %莆田: 0.2 %莆田: 0.2 %西宁: 41.8 %西宁: 41.8 %西安: 0.5 %西安: 0.5 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 0.5 %贵阳: 0.5 %达州: 0.2 %达州: 0.2 %运城: 1.1 %运城: 1.1 %邯郸: 0.2 %邯郸: 0.2 %邵阳: 0.4 %邵阳: 0.4 %郑州: 0.2 %郑州: 0.2 %重庆: 0.4 %重庆: 0.4 %长春: 0.2 %长春: 0.2 %长沙: 0.2 %长沙: 0.2 %阿姆斯特丹: 0.2 %阿姆斯特丹: 0.2 %其他其他ScrantonSeattle[]上海东莞临汾九江北京十堰南京台州哈尔滨哥伦布嘉兴圣安东尼奥夏延大连天津宣城常德广州廊坊张家口成都扬州揭阳曼谷杭州武汉池州沈阳洛阳温州湖州漯河烟台石家庄纽约芒廷维尤芝加哥苏州莆田西宁西安诺沃克贵阳达州运城邯郸邵阳郑州重庆长春长沙阿姆斯特丹

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(6)

    Article views(387) PDF downloads(30) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return