• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

超导电动磁浮道岔线形设计与侧向过岔速度优化

张榕欣 蔡小培 汤雪扬 王一

张榕欣, 蔡小培, 汤雪扬, 王一. 超导电动磁浮道岔线形设计与侧向过岔速度优化[J]. 西南交通大学学报, 2025, 60(4): 893-903. doi: 10.3969/j.issn.0258-2724.20240421
引用本文: 张榕欣, 蔡小培, 汤雪扬, 王一. 超导电动磁浮道岔线形设计与侧向过岔速度优化[J]. 西南交通大学学报, 2025, 60(4): 893-903. doi: 10.3969/j.issn.0258-2724.20240421
ZHANG Rongxin, CAI Xiaopei, TANG Xueyang, WANG Yi. Alignment Design of Superconducting Electrodynamic Suspension Turnouts and Optimization of Lateral Crossing Speed[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 893-903. doi: 10.3969/j.issn.0258-2724.20240421
Citation: ZHANG Rongxin, CAI Xiaopei, TANG Xueyang, WANG Yi. Alignment Design of Superconducting Electrodynamic Suspension Turnouts and Optimization of Lateral Crossing Speed[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 893-903. doi: 10.3969/j.issn.0258-2724.20240421

超导电动磁浮道岔线形设计与侧向过岔速度优化

doi: 10.3969/j.issn.0258-2724.20240421
基金项目: 国家自然科学基金项目(U23A20666)
详细信息
    作者简介:

    张榕欣(2002—),男,博士研究生,研究方向为磁浮列车与道岔动力学特性,E-mail:24121097@bjtu.edu.cn

    通讯作者:

    蔡小培(1982—),男,教授,博士,研究方向为铁路动力学,E-mail:xpcai@bjtu.edu.cn

  • 中图分类号: U237

Alignment Design of Superconducting Electrodynamic Suspension Turnouts and Optimization of Lateral Crossing Speed

  • 摘要:

    为提升超导电动悬浮列车(EDS)在侧向通过道岔时的速度,本文基于多体动力学理论与运动微分方程,建立超导EDS磁浮列车-道岔耦合动力学模型. 首先,通过分析不同道岔梁长度对车辆动力响应的影响,确定最优道岔梁长度,并设计相应的磁浮单开道岔线形;在此基础上,进一步研究不同侧向过岔速度下的动力学响应特性,明确满足乘客舒适度和行车安全性的侧向过岔速度临界值. 研究表明:较短的道岔梁长度与较低的通过速度可扩大系统稳定区域,减少悬浮和导向间隙波动,提升乘坐舒适度和行车平稳性;列车以100 km/h的速度侧向通过道岔梁长度为8 m的道岔线形,动力响应最佳,满足乘客舒适度要求,侧向过岔速度可达130 km/h,比现有磁浮列车的最高速度提升了85%;随着侧向过岔速度的增加,道岔线形对磁悬浮列车行车安全性和乘坐舒适度的影响愈加显著,车辆动力响应更加明显,侧向安全过岔速度的临界值为150 km/h.

     

  • 图 1  超导EDS列车磁轨系统的结构和受力原理

    Figure 1.  Structure and force principle of magnetic rail system of a superconducting EDS train

    图 2  超导EDS列车车体和悬浮架受力示意

    Figure 2.  Body and levitation frame force of superconducting EDS train

    图 3  高速飞车道岔梁模型

    Figure 3.  Turnout beam mode of high-speed train

    图 4  超导EDS列车-道岔耦合动力学模型

    Figure 4.  Superconducting EDS train-turnout coupling dynamics model

    图 5  超导EDS列车-道岔耦合动力学模型示意

    Figure 5.  Superconducting EDS train-turnout coupling dynamics model

    图 6  悬浮架模型及输出位置

    Figure 6.  Levitation frame model and output positions

    图 7  磁浮车辆系统时域曲线

    Figure 7.  Time-domain curves of maglev vehicle system

    图 8  道岔区基本曲线线形(单位:m)

    Figure 8.  Basic curvilinear shape of turnout area (unit: m)

    图 9  不同道岔梁长度下的曲线线形

    Figure 9.  Curvilinear shape under different lengths of turnout beams

    图 10  车辆系统动力响应

    Figure 10.  Dynamic responses of vehicle system

    图 11  不同道岔梁长度下车辆系统振动加速度极值对比

    Figure 11.  Comparison of extreme values of vehicle system vibration acceleration

    图 12  不同传感器位置下的导向间隙响应

    Figure 12.  Guide gap responses at different sensor positions

    图 13  不同传感器位置下的悬浮间隙响应

    Figure 13.  Levitation gap responses at different sensor positions

    图 14  不同道岔梁长度下导向间隙变化曲线

    Figure 14.  Variation curves of guide gap under different lengths of turnout beams

    图 15  不同道岔梁长度下悬浮间隙变化曲线

    Figure 15.  Variation curves of levitation gap under different lengths of turnout beams

    图 16  不同侧向过岔速度下车辆系统动力响应

    Figure 16.  Dynamic responses of vehicle system at different lateral crossing speeds

    图 17  不同侧向过岔速度下车辆系统动力响应极值对比

    Figure 17.  Comparison of extreme values of vehicle system dynamic response at different lateral crossing speeds

    表  1  道岔区导轨参数

    Table  1.   Parameters of guide rail in turnout area

    参数 数值
    道岔梁长度/m 6,8,10,12
    横截面面积/m2 8.576
    杨氏模量/MPa 35500
    泊松比 0.2
    密度/(Kg•m−3 2500
    纵向转动惯量 Ix/m4 0.2044
    横向转动惯量 Iy/m4 0.2058
    垂直转动惯量 Iz/m4 0.0851
    下载: 导出CSV

    表  2  耦合动力学模型参数

    Table  2.   Parameters of coupling dynamics model

    参数 数值
    车体长度/m 25000
    车体质量/kg 20750
    空气弹簧垂向刚度KSZ/(N·m−1 2.2×105
    超导磁体质量/kg 4100
    轨道宽度/mm 5740
    悬浮架长度/m 6
    车体之间连接刚度Kc/(N·m−1 4.9×105
    悬浮架(超导磁体)的弹性刚度KpKb)/(N·m−1 1.2×105
    下载: 导出CSV

    表  3  模型参数对比结果

    Table  3.   Comparison results of model parameters

    模型 悬浮力 垂向加速度
    最大值/(m·s−2
    横向加速度
    最大值/(m·s−2
    本文 波动幅度 2.3% 0.189 1.191
    文献[22] 低于 3% 0.187 1.184
    下载: 导出CSV
  • [1] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [2] 吴会超,罗建利,周文,等. 中低速磁浮车岔耦合振动研究[J]. 西南交通大学学报,2022,57(3): 483-489. doi: 10.3969/j.issn.0258-2724.20210829

    WU Huichao, LUO Jianli, ZHOU Wen, et al. Coupled vibration between low-medium speed maglev vehicle and turnout[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 483-489. doi: 10.3969/j.issn.0258-2724.20210829
    [3] 牟瀚林,张一敏,徐绪宝,等. 高速磁浮铁路试验线建设方案研究[J]. 铁道工程学报,2023,40(8): 44-49. doi: 10.3969/j.issn.1006-2106.2023.08.008

    MU Hanlin, ZHANG Yimin, XU Xubao, et al. Study on construction scheme of high-speed maglev railway test line[J]. Journal of Railway Engineering Society, 2023, 40(8): 44-49. doi: 10.3969/j.issn.1006-2106.2023.08.008
    [4] COFFEY H T, CHILTON F, HOPPIE L O. Feasibility of magnetically levitating high speed ground vehicles[M]. California: Stanford Research Institute, 1972.
    [5] 曾国锋,韩紫平,刘鸣博,等. 电磁悬浮型高速磁浮车-岔垂向动力响应[J]. 同济大学学报(自然科学版),2023,51(3): 303-313.

    ZENG Guofeng, HAN Ziping, LIU Mingbo, et al. Vertical dynamic response of electromagnetic suspension highspeed maglev vehicle-turnout[J]. Journal of Tongji University (Natural Science), 2023, 51(3): 303-313.
    [6] ZHANG Y J. Study on structural design of key beam of medium and low speed maglev turnout[J]. Machine Design & Research, 2022, 38(6): 203-208.
    [7] 仵叔强. 中低速磁浮交通道岔平面线形研究与优化设计[J]. 现代城市轨道交通,2022(12): 1-5.

    WU Shuqiang. Research and optimization design of plane alignment of medium and low speed maglev traffi c turnout[J]. Modern Urban Transit, 2022(12): 1-5.
    [8] 吴昊,王飞,郭牧凡,等. 真空管超高速磁浮交通系统平面曲线参数运动学分析[J]. 铁道标准设计,2023,67(9): 21-27.

    WU Hao, WANG Fei, GUO Mufan, et al. Kinematic analysis on plane curve parameter of vacuum tube ultra-high-speed maglev transportation system[J]. Railway Standard Design, 2023, 67(9): 21-27.
    [9] LI M, GAO D G, LI T, et al. Dynamic interaction of medium-low-speed maglev train running on the turnout made of steel structures[J]. Vehicle System Dynamics, 2023, 61(4): 1129-1150. doi: 10.1080/00423114.2022.2064757
    [10] WANG D X, LI X Z, WU Z Y. Dynamic performance of the LMS maglev train-track-bridge system under uneven settlement for two typical bridges[J]. International Journal of Structural Stability and Dynamics, 2021, 21(1): 2150006.1-2150006.33.
    [11] 卜秀孟,王力东,黎清蓉,等. 高速磁浮车-桥耦合振动控制参数影响分析[J]. 西南交通大学学报,2024,59(4): 848-857,866. doi: 10.3969/j.issn.0258-2724.20230534

    BU Xiumeng, WANG Lidong, LI Qingrong, et al. Influence analysis of vibration control parameters for high-speed maglev train-bridge coupling[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 848-857,866. doi: 10.3969/j.issn.0258-2724.20230534
    [12] KYOTANI Y. Recent progress by JNR on maglev[J]. IEEE Transactions on Magnetics, 24(2): 804-807.
    [13] YOSHIOKA H. Dynamic performance of MLX-01 car on yamanashi magnetic levitation test line[J]. Foregin Roling Stock, 2000, 37(5): 29-34.
    [14] 王志强,龙志强,李晓龙. 高速磁浮列车搭接结构悬浮系统仿真分析[J]. 西南交通大学学报,2024,59(3): 590-599. doi: 10.3969/j.issn.0258-2724.20210932

    WANG Zhiqiang, LONG Zhiqiang, LI Xiaolong. Simulation analysis of levitation system of high-speed maglev trains with joint structure[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 590-599. doi: 10.3969/j.issn.0258-2724.20210932
    [15] 马卫华,李腾飞,胡俊雄,等. 超导EDS磁浮列车多级悬挂方案优化与动力学性能[J]. 交通运输工程学报,2023,23(6): 168-179.

    MA Weihua, LI Tengfei, HU Junxiong, et al. Optimization on multi-stage suspension scheme and dynamics performance of superconducting EDS maglev train[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 168-179.
    [16] ZHAI W M. Vehicle–track coupled dynamics models[M]. Singapore: Springer Singapore, 2019: 17-149.
    [17] WANG Z L, XU Y L, LI G Q, et al. Modelling and validation of coupled high-speed maglev train-and-viaduct systems considering support flexibility[J]. Vehicle System Dynamics, 2019, 57(2): 161-191. doi: 10.1080/00423114.2018.1450517
    [18] SHI Y, MA W H, LI M, et al. Research on dynamics of a new high-speed maglev vehicle[J]. Vehicle System Dynamics, 2022, 60(3): 721-742. doi: 10.1080/00423114.2020.1838568
    [19] OKUBO T, UEDA N, OHASHI S. Effective control method of the active damper system against the multidirectional vibration in the superconducting magnetically levitated bogie[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 2541609.
    [20] 刘士苋,王磊,王路忠,等. 电动悬浮列车及车载超导磁体研究综述[J]. 西南交通大学学报,2023,58(4): 734-753. doi: 10.3969/j.issn.0258-2724.20220621

    LIU Shixian, WANG Lei, WANG Luzhong, et al. Review on electrodynamic suspension trains and on-board superconducting magnets[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 734-753. doi: 10.3969/j.issn.0258-2724.20220621
    [21] 胡叙洪,吕建军,袁伟,等. 低真空管道磁浮交通技术[M]. 北京:中国铁道出版社,2023.
    [22] GALLUZZI R, CIRCOSTA S, AMATI N, et al. A multi-domain approach to the stabilization of electrodynamic levitation systems[J]. Journal of Vibration and Acoustics, 2020, 142(6): 061004.1-061004.12. doi: 10.1115/1.4046952
    [23] 王美琪,曾思恒,李源,等. 二自由度磁浮列车悬浮系统时滞控制研究[J]. 西南交通大学学报,2024,59(4): 812-822. doi: 10.3969/j.issn.0258-2724.20230282

    WANG Meiqi, ZENG Siheng, LI Yuan, et al. Research on time lag control of levitation system of two-degree-of-freedom magnetic levitation train[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 812-822. doi: 10.3969/j.issn.0258-2724.20230282
    [24] FUJIMOTO T, AIBA M, SUZUKI H, et al. Characteristics of electromagnetic force of ground coil for levitation and guidance at the yamanashi maglev test line[J]. Quarterly Report of RTRI, 2000, 41(2): 63-67. doi: 10.2219/rtriqr.41.63
    [25] 邵壮,张东风,马佳骏. 磁悬浮轨道道岔线形设计及计算方法研究[J/OL]. 铁道标准设计,2024:1-8 [2024-06-12]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=TDBS20240607007&dbname=CJFD&dbcode=CJFQ.

    SHAO Zhuang, ZHANG Dongfeng, MA Jiajun. Research on linear design and calculation method of maglev track turnout[J/OL]. China Industrial Economics, 2024: 1-8 [2024-06-12]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=TDBS20240607007&dbname=CJFD&dbcode=CJFQ.
    [26] 中华人民共和国住房和城乡建设部. 高速磁浮交通设计标准:CJJ/T 310—2021[S]. 北京:中国建筑工业出版社,2021.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  33
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-27
  • 修回日期:  2024-11-26
  • 刊出日期:  2024-11-29

目录

    /

    返回文章
    返回