• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

风阻制动装置纵向布局密度对高速列车制动效果的影响

谢红太 王红

谢红太, 王红. 风阻制动装置纵向布局密度对高速列车制动效果的影响[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240219
引用本文: 谢红太, 王红. 风阻制动装置纵向布局密度对高速列车制动效果的影响[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240219
XIE Hongtai, WANG Hong. Influence of Longitudinal Layout Density of Aerodynamic Braking Devices on Braking Effect of High-Speed Trains[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240219
Citation: XIE Hongtai, WANG Hong. Influence of Longitudinal Layout Density of Aerodynamic Braking Devices on Braking Effect of High-Speed Trains[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240219

风阻制动装置纵向布局密度对高速列车制动效果的影响

doi: 10.3969/j.issn.0258-2724.20240219
基金项目: 国家自然科学基金资助项目(72061022);甘肃省重点研发计划(23YFGA0040)
详细信息
    作者简介:

    谢红太(1993—),男,博士研究生,研究方向为轨道交通车辆零部件可靠性及列车空气动力学,E-mail:1144212853@qq.com

    通讯作者:

    王红(1968—),男,教授,研究方向为轨道交通车辆零部件可靠性及预防性维护策略,E-mail:wh@mail.lzjtu.cn

  • 中图分类号: U266.2

Influence of Longitudinal Layout Density of Aerodynamic Braking Devices on Braking Effect of High-Speed Trains

  • 摘要:

    为进一步探究风阻制动装置在速度400 km/h及更高速列车上的协同布局,明确适配现阶段我国标准动车组风阻制动系统的整体制动收益和制动效率,以CR400AF平台动车组车体外形和基础制动系统配置为参考,装配不同数量的“蝶形”风阻制动装置;仿真计算不同工况下装配风阻制动装置高速列车的气动特性,提出适用于风阻制动问题的直接积分法解算方法;将列车在某一初速度工况下单纯依靠风阻制动装置进行制动停车,与列车惰行至停车的制动效果作对比分析;建立列车制动运行方程,采用分段累计法研究计算风阻制动配合常用制动与紧急制动的制动距离和制动时间. 研究结果表明:风阻制动装置的安装对于提高列车整体气动阻力有着明显的制动收益,布置密度越大,前后排风阻制动板间气动干涉效应越显著;采用联合风阻制动的复合制动方式可有效弥补高速阶段黏着制动力的不足,同时可解决风阻制动低速阶段制动力收益低的问题;联合制动距离与速度平方成正比,制动时间与速度一次方成正比,联合风阻制动可将350 km/h的初速度紧急制动距离缩减至5500 m以内.

     

  • 图 1  装配风阻制动装置高速列车几何模型

    Figure 1.  Geometric model of a high-speed train equipped with aerodynamic braking devices

    图 2  计算模型网格划分情况

    Figure 2.  Mesh division of computational model

    图 3  不同网格密度对应列车断面轮廓上稳态压力

    Figure 3.  Steady-state pressure on train cross-section profile under different mesh densities

    图 4  风阻制动装置布置方案

    Figure 4.  Layout schemes of aerodynamic braking devices

    图 5  装配风阻制动装置高速列车速度-阻力曲线

    Figure 5.  Speed–drag curves of high-speed trains equipped with aerodynamic braking devices

    图 6  装配风阻制动装置高速列车气动阻力对比(v=400 km/h)

    Figure 6.  Comparison of aerodynamic drag for high-speed trains equipped with different sets of aerodynamic braking devices (v = 400 km/h)

    图 7  单个风阻制动装置产生的气动阻力(v = 400 km/h)

    Figure 7.  Aerodynamic drag generated by a single aerodynamic braking device (v = 400 km/h)

    图 8  高速列车对称面上部稳态压力(v=400 km/h)

    Figure 8.  Steady-state pressure on symmetry plane of high-speed trains (v = 400 km/h)

    图 9  装配风阻制动装置高速列车纵向对称面上部稳态压力

    Figure 9.  Steady-state pressure on longitudinal symmetry plane of high-speed trains equipped with aerodynamic braking devices

    图 10  装配风阻制动装置的高速列车在不同初速度工况下的风阻制动特性

    Figure 10.  Aerodynamic braking characteristics of high-speed trains equipped with aerodynamic braking devices under different initial speeds

    图 11  CR400AF型动车组常用制动 + 风阻制动减速度

    Figure 11.  Deceleration of CR400AF trainsets with service braking + aerodynamic braking

    图 13  CR400AF型动车组紧急制动 + 风阻制动减速度

    Figure 13.  Deceleration of CR400AF trainsets with emergency braking + aerodynamic braking

    图 12  7N常用制动 + 风阻制动制动距离与制动时间

    Figure 12.  Braking distance and time of 7N service braking + aerodynamic braking

    图 14  紧急制动UB + 风阻制动制动距离与制动时间

    Figure 14.  Braking distance and time of UB emergency braking + aerodynamic braking

    表  1  网格尺度对装配风阻制动装置的高速列车气动阻力的影响

    Table  1.   Effect of mesh scale on aerodynamic drag of high-speed trains equipped with aerodynamic braking devices

    网格密度 网格数/万个 阻力系数 变化率/%
    精细 5340 2.301
    中等 3900 2.275 1.12
    粗糙 2860 2.196 4.56
    下载: 导出CSV

    表  2  装配不同套风阻制动装置后列车的阻力系数

    Table  2.   Drag coefficients of high-speed trains equipped with different sets of aerodynamic braking devices

    8 编组列
    车车辆编号
    对象 风阻制动装置布置套数/套
    0 1 2 4 8
    TC01 风阻制动装置 1.033 1.032 1.048 1.053
    车辆整体 0.120 0.116 0.116 0.116 0.154
    M02 风阻制动装置 0.705
    车辆整体 0.037 0.036 0.036 0.036 0.060
    TP03 风阻制动装置 0.770 0.657
    车辆整体 0.032 0.031 0.031 0.030 0.055
    MH04 风阻制动装置 0.611
    车辆整体 0.032 0.032 0.031 0.031 0.053
    MB05 风阻制动装置 0.588
    车辆整体 0.032 0.032 0.032 0.032 0.052
    TP06 风阻制动装置 0.734 0.575
    车辆整体 0.032 0.031 0.031 0.030 0.051
    M07 风阻制动装置 0.556
    车辆整体 0.031 0.031 0.031 0.030 0.050
    TC08 风阻制动装置 0.843 0.719 0.578
    车辆整体 0.067 0.066 0.061 0.061 0.082
    整车 0.382 0.413 0.438 0.484 0.557
    下载: 导出CSV

    表  3  风阻制动阻力公式

    Table  3.   Aerodynamic braking resistance equation

    布置套数/套 e cp
    0 0 cp=1.32 + 0.0185v + 0.000508v2
    1 0.000023 cp=1.32 + 0.0185v + 0.000531v2
    2 0.000045 cp=1.32 + 0.0185v + 0.000553v2
    4 0.000075 cp=1.32 + 0.0185v + 0.000583v2
    8 0.000121 cp=1.32 + 0.0185v + 0.000629v2
    下载: 导出CSV

    表  4  CR400AF型动车组制动系统部件配置

    Table  4.   Component configuration of braking system for CR400AF trainsets

    车辆名称 司机制动指令
    设备/个
    制动控制
    设备/套
    盘形制动
    装置/套
    停放制动
    装置/套
    主供风
    单元/个
    辅助供风
    单元/个
    紧急制动
    设备/套
    TC01 1 0 10 2 1
    M02 1 8 1
    TP03 1 8 4 1 1 1
    MH04 1 8 1
    MB05 1 8 1
    TP06 1 8 4 1 1 1
    M07 1 8 1
    TC08 1 1 10 2 1
    下载: 导出CSV

    表  5  CR400AF型动车组紧急制动UB最小考核平均减速度(不考虑空气阻力)

    Table  5.   Minimum assessment average deceleration of CR400AF trainsets under UB emergency braking (without considering aerodynamic drag)

    速度/ (km·h−1 考核减速度/
    (m·s−2
    联合制动减速度/
    (m·s−2
    0~250 0.98 0.98
    250~300 0.75 0.81
    300~350 0.4 0.47
    350~450 0.53
    下载: 导出CSV

    表  6  高速动车组制动距离考核指标

    Table  6.   Braking distance assessment indicators for high-speed trainsets

    制动初速度/(km·h−1 制动距离/m 联合制动距离/m
    450 9200
    350 6500 5500
    300 3800 3630
    250 3200 2500
    200 2000 1700
    160 1400 1100
    120 ≤800 ≤650
    下载: 导出CSV
  • [1] YOSHIMURA M, SAITO S, HOSAKA S, et al. Characteristics of the aerodynamic brake of the vehicle on the yamanashi maglev test line[J]. Quarterly Report of RTRI, 2000, 41(2): 74-78. doi: 10.2219/rtriqr.41.74
    [2] BAKER C J. The simulation of unsteady aerodynamic cross wind forces on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(2): 88-99. doi: 10.1016/j.jweia.2009.09.006
    [3] CARRARINI A. Reliability based analysis of the crosswind stability of railway vehicles[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(7): 493-509. doi: 10.1016/j.jweia.2006.10.001
    [4] KAZUMASA O, MASAFUMI Y. Development of aerodynamic brake of maglev vehicle for emergency use[J]. RIRI, 1989, 3(11): 22-30.
    [5] TAKAMI H, MAEKAWA H. Characteristics of a wind-actuated aerodynamic braking device for high-speed trains[J]. Journal of Physics: Conference Series, 2017, 822: 012061.1-012061.7.
    [6] TAKAMI H. Development of aerodynamic brake device for high-speed railway[J]. Quarterly Report of RTRI, 2020, 61(4): 267-272.
    [7] 田春, 吴萌岭, 朱洋永, 等. 空气动力制动风翼在车上布置数值仿真研究[J]. 中国铁道科学, 2012, 33(3): 98-101. doi: 10.3969/j.issn.1001-4632.2012.03.16

    TIAN Chun, WU Mengling, ZHU Yangyong, et al. Numerical simulation research on the arrangement of the aerodynamic braking plates in the train[J]. China Railway Science, 2012, 33(3): 98-101. doi: 10.3969/j.issn.1001-4632.2012.03.16
    [8] 田春, 吴萌岭, 费巍巍, 等. 空气动力制动制动风翼纵向位置制动力规律[J]. 同济大学学报(自然科学版), 2011, 39(5): 705-709.

    TIAN Chun, WU Mengling, FEI Weiwei, et al. Rule of aerodynamics braking force in longitudinal different position of high-speed train[J]. Journal of Tongji University (Natural Science), 2011, 39(5): 705-709.
    [9] 孙文静, 田春, 周劲松, 等. 高速列车空气动力制动会车动力学性能[J]. 同济大学学报(自然科学版), 2014, 42(9): 1401-1407.

    SUN Wenjing, TIAN Chun, ZHOU Jinsong, et al. Dynamics performance of high-speed train with aerodynamic brake under crossing[J]. Journal of Tongji University (Natural Science), 2014, 42(9): 1401-1407.
    [10] 高立强, 奚鹰, 邓阁, 等. 空气动力制动风翼板气动干扰效应研究[J]. 机械设计, 2015, 32(9): 19-24.

    GAO Liqiang, XI Ying, DENG Ge, et al. Research on the aerodynamic interference effects of the brake panel[J]. Journal of Machine Design, 2015, 32(9): 19-24.
    [11] 高立强, 胡雄, 孙德建, 等. 空气动力制动前排风翼板制动力影响规律[J]. 铁道学报, 2018, 40(1): 31-37.

    GAO Liqiang, HU Xiong, SUN Dejian, et al. Influence rule of aerodynamics braking force from the front brake panel[J]. Journal of the China Railway Society, 2018, 40(1): 31-37.
    [12] 高广军, 张普阳, 商雯斐, 等. 流线型部位风阻制动板对高速列车气动特性的影响分析[J]. 中南大学学报(自然科学版), 2023, 54(9): 3708-3718.

    GAO Guangjun, ZHANG Puyang, SHANG Wenfei, et al. Analysis of influence of aerodynamic braking plates installed on streamlined parts on aerodynamic characteristics of high-speed train[J]. Journal of Central South University (Science and Technology), 2023, 54(9): 3708-3718.
    [13] 李锋. 高速列车流线型区域制动板增阻机理及参数优化研究[D]. 长沙: 中南大学, 2022.
    [14] 谢红太, 王红. 速度400 km/h高速列车风阻制动装置布置的数值研究[J]. 铁道学报, 2023, 45(10): 42-51.

    XIE Hongtai, WANG Hong. Numerical study on arrangement of aerodynamic braking device for 400 km/h high-speed train[J]. Journal of the China Railway Society, 2023, 45(10): 42-51.
    [15] 谢红太, 王红. 400 km/h高速列车 “蝶形” 风阻制动装置设计与仿真[J]. 北京交通大学学报, 2022, 46(6): 152-160.

    XIE Hongtai, WANG Hong. Design and simulation of “butterfly” aerodynamic braking device for 400 km/h high-speed train[J]. Journal of Beijing Jiaotong University, 2022, 46(6): 152-160.
    [16] 谢红太, 王红, 柴伟. 新型高速列车风阻制动装置设计实现与仿真分析[J]. 工程设计学报, 2023, 30(2): 244-253.

    XIE Hongtai, WANG Hong, CHAI Wei. Design and numerical simulation of new aerodynamic braking de-vice for High-speed train[J] Chinese Journal of Engineering Design, 2023, 30(2): 244-253.
    [17] BAKER C J. A review of train aerodynamics part 2–applications[J]. The Aeronautical Journal, 2014, 118(1202): 345-382. doi: 10.1017/S0001924000009179
    [18] HAJIPOUR A, RASHIDI M M, LI T, et al. A review of recent studies on simulations for flow around high-speed trains[J]. Journal of Applied and Computational Mechanics, 2018, 5(2): 311-333.
    [19] RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38(6/7): 469-514.
    [20] TIAN H Q. Review of research on high-speed railway aerodynamics in China[J]. Transportation Safety and Environment, 2019, 1(1): 1-21. doi: 10.1093/tse/tdz014
    [21] 刘继宗, 张祖涛, 王浩, 等. 城轨交通制动能量利用技术研究现状与展望[J]. 西南交通大学学报, 2024, 59(6): 1322-1345.

    LIU Jizong, ZHANG Zutao, WANG Hao, et al. Braking energy utilization in urban rail transit: status and prospects[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1322-1345.
    [22] 李田, 秦登, 安超, 等. 计算网格对列车空气动力学不确定性的影响[J]. 西南交通大学学报, 2019, 54(4): 816-822.

    LI Tian, QIN Deng, AN Chao, et al. Effect of computational grid on uncertainty in train aerodynamics[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 816-822.
    [23] 国家铁路局. 铁路应用空气动力学第4部分: 列车空气动力学性能数值仿真规范: TB/T-3503.4—2018 [S]. 北京: 中国铁道出版社, 2018.
    [24] ZUO J Y, WU M L, TIAN C, et al. Aerodynamic braking device for high-speed trains: design, simulation and experiment[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(3): 260-270. doi: 10.1177/0954409712471620
    [25] 张中央. 列车牵引计算[M]. 2版. 北京: 中国铁道出版社, 2019.
    [26] 马飞, 尹崇宏, 刘中华, 等. 安装风阻制动装置的高速列车制动距离研究[J]. 铁道车辆, 2021, 59(1): 16-19.

    MA Fei, YIN Chonghong, LIU Zhonghua, et al. Research on braking distance of high-speed train mounted with wind-resistance brake device[J]. Rolling Stock, 2021, 59(1): 16-19.
    [27] 朱文良, 吴萌岭. 动车组制动计算方法研究[J]. 同济大学学报(自然科学版), 2017, 45(1): 119-123, 134.

    ZHU Wenliang, WU Mengling. Braking calculation of electric multiple units (EMUs)[J]. Journal of Tongji University (Natural Science), 2017, 45(1): 119-123,134.
    [28] 中国铁路总公司. 铁路技术管理规程-高速铁路部分[M]. 北京: 中国铁道出版社, 2014.
    [29] 刘志明, 王文静, 等. 高速铁路动车组[M]. 北京: 中国铁道出版社, 2021.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  32
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-07
  • 修回日期:  2024-09-12
  • 网络出版日期:  2025-09-02

目录

    /

    返回文章
    返回