• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

卵石破碎面数目影响集料直剪性能规律研究

井国庆 程岩 刘贵宪

井国庆, 程岩, 刘贵宪. 卵石破碎面数目影响集料直剪性能规律研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240161
引用本文: 井国庆, 程岩, 刘贵宪. 卵石破碎面数目影响集料直剪性能规律研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240161
JING Guoqing, CHENG Yan, LIU Guixian. Influence of Number of Pebble Fracture Surfaces on Direct Shear Properties of Aggregates[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240161
Citation: JING Guoqing, CHENG Yan, LIU Guixian. Influence of Number of Pebble Fracture Surfaces on Direct Shear Properties of Aggregates[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240161

卵石破碎面数目影响集料直剪性能规律研究

doi: 10.3969/j.issn.0258-2724.20240161
基金项目: 国家自然科学基金项目(52027813)
详细信息
    作者简介:

    井国庆(1979—),男,教授,研究方向为道路与铁道工程,E-mail:gqjing@bjtu.edu.cn

  • 中图分类号: U213.72

Influence of Number of Pebble Fracture Surfaces on Direct Shear Properties of Aggregates

  • 摘要:

    为了研究道砟颗粒的破碎面数目对道床直剪性能的影响规律,首先,对光滑的河卵石进行破碎,得到拥有不同破碎面数量的道砟集料;其次,针对以上工况在不同垂向应力下开展直剪试验,得到剪切过程中道砟集料的应力应变关系和变形特性;最后,通过公式计算,得出道砟集料的峰值抗剪强度与内摩擦角随垂向应力的变化规律. 研究结果表明:在强度特性方面,道砟破碎面数量为0、1、2、3个时,同一垂向应力下道砟集料的剪切强度和内摩擦角在一定范围内会随着道砟破碎面数量的增加而增加,剪切强度依次提升了14.7%~25.6%、12.2%~27.4%、6.0%~10.1%;对于变形特性,道砟集料的剪缩特性会随着破碎面数目的增加而增加,最大增加了76.4%,而剪胀特性会随着破碎面数目的增加而减少,最大减少了20.8%.

     

  • 图 1  试验设备布置图

    Figure 1.  Test equipment layout

    图 2  道砟级配曲线

    Figure 2.  Gradation curves of railway ballast

    图 3  破碎面数量分别为0、1、2、3个的道砟试样

    Figure 3.  Ballast samples with fracture surface numbers of 0, 1, 2, and 3

    图 4  直剪试验应力-应变曲线

    Figure 4.  Stress–strain curves from direct shear tests

    图 5  峰值抗剪强度和内摩擦角

    Figure 5.  Peak shear strength and internal friction angle

    图 6  直剪试验剪切变形

    Figure 6.  Shear deformation in direct shear tests

    表  1  AREA4道砟级配推荐

    Table  1.   Recommended ballast gradation of AREA4

    尺寸/mm 50.00 37.50 25.00 18.75
    过筛率/% 100 90~100 20~25 0~15
    下载: 导出CSV

    表  2  直剪试验不同工况下的最大剪缩剪、胀量

    Table  2.   Maximum shear shrinkage and dilation under different conditions in direct shear tests mm

    垂向压力/kPa 最大剪缩量 最大剪胀量
    0 1 个破碎面 2 个破碎面 3 个破碎面 0 1 个破碎面 2 个破碎面 3 个破碎面
    50 0.058 0.082 0.130 0.158 14.310 14.235 13.160 12.350
    100 0.086 0.120 0.200 0.266 13.310 12.810 10.145 9.155
    200 0.180 0.212 0.374 0.478 9.870 9.680 9.440 8.520
    下载: 导出CSV
  • [1] 井国庆. 铁路有砟道床[M]. 北京: 中国铁道出版社, 2012: 196-199.
    [2] 曾树谷. 铁路散粒体道床[M]. 北京: 中国铁道出版社, 1997: 41.
    [3] GUO Y L, XIE J L, FAN Z, et al. Railway ballast material selection and evaluation: a review[J]. Construction and Building Materials, 2022, 344: 128218. doi: 10.1016/j.conbuildmat.2022.128218
    [4] TOLOMEO M, MCDOWELL G R. Modelling real particle shape in DEM: a comparison of two methods with application to railway ballast[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 159: 105-221.
    [5] DISSANAYAKE D, KURUKULASURIYA L C, DISSANAYAKE P. Evaluation of shear strength parameters of rail track ballast in Sri Lanka[J]. Journal of the National Science Foundation of Sri Lanka, 2016, 44(1): 61-67. doi: 10.4038/jnsfsr.v44i1.7982
    [6] 崔旭浩, 肖宏, 令行. 脏污对散体道床动态行为影响的宏细观分析[J]. 铁道学报, 2022, 44(9): 120-127. doi: 10.3969/j.issn.1001-8360.2022.09.016

    CUI Xuhao, XIAO Hong, LING Xing. Macro and micro analysis of effect of ballast fouling on dynamic characteristics of ballast bed[J]. Journal of the China Railway Society, 2022, 44(9): 120-127. doi: 10.3969/j.issn.1001-8360.2022.09.016
    [7] 陈宪麦, 陈楠, 王日吉, 等. 粗、细粒径煤质对道砟颗粒剪切性能的影响[J]. 中南大学学报(自然科学版), 2022, 53(7): 2789-2797. doi: 10.11817/j.issn.1672-7207.2022.07.035

    CHEN Xianmai, CHEN Nan, WANG Riji, et al. Influence of coarse and fine coal quality on shear performance of ballast particles[J]. Journal of Central South University (Science and Technology), 2022, 53(7): 2789-2797. doi: 10.11817/j.issn.1672-7207.2022.07.035
    [8] 周陶勇, 夏建军, 许平. 道砟颗粒二维廓形对破碎的影响研究[J]. 公路交通科技, 2022, 39(11): 56-61. doi: 10.3969/j.issn.1002-0268.2022.11.008

    ZHOU Taoyong, XIA Jianjun, XU Ping. Study on influence of railway ballast 2D profile on crushing[J]. Journal of Highway and Transportation Research and Development, 2022, 39(11): 56-61. doi: 10.3969/j.issn.1002-0268.2022.11.008
    [9] MISHRA D, NAZIUR MAHMUD S M. Effect of particle size and shape characteristics on ballast shear strength: a numerical study using the direct shear test[C]//2017 Joint Rail Conference. Philadelphia: [s. n.], 2017.
    [10] JING G Q, JI Y M, QIANG W L, et al. Experimental and numerical study on ballast flakiness and elongation index by direct shear test[J]. International Journal of Geomechanics., 2020, 20(10): 04020169. doi: 10.1061/(ASCE)GM.1943-5622.0001791
    [11] ZHENG S F, LIU Y, Zhang N, et al. Experimental studies on shape and size effects on particle breakage of railway ballast[J]. Transportation Geotechnics., 2022, 37: 100883. doi: 10.1016/j.trgeo.2022.100883
    [12] JENSEN R P, EDIL T B, BOSSCHER P J, et al. Effect of particle shape on interface behavior of DEM-simulated granular materials[J]. International Journal of Geomechanics, 2001, 1(1): 1-19.
    [13] RAO C. Development of three-dimensional image analysis techniques to determine shape and size properties of coarse aggregate[M]. Champaign: University of Illinois at Urbana-Champaign, 2001.
    [14] SHI C, FAN Z, CONNOLLY D P, et al. Railway ballast performance: recent advances in the understanding of geometry, distribution and degradation. Transportation Geotechnics. 2023, 41: 101042.
    [15] 高睿, 石知政, 刘洋泽鹏, 等. 土工格栅对受污道砟直剪特性影响的试验研究[J]. 西南交通大学学报, 2021, 56(6): 1185-1191.

    GAO Rui, SHI Zhizheng, LIU Yangzepeng, et al. Experimental study on effect of geogrid on direct shear behavior of contaminated ballast[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1185-1191.
    [16] INDRARATNA B, WIJEWARDENA L S S, BALASUBRAMANIAM A S. Large-scale triaxial testing of grey wacke rockfill[J]. Géotechnique, 1993, 43(1): 37-51.
    [17] RAYMOND G P. Track and support rehabilitation for a mine company railroad[J]. Canadian Geotechnical Journal, 2000, 37(2): 318-332. doi: 10.1139/t99-108
    [18] American Railway Engineering and Maintenance-of-Way Association AREMA. Manual for Railway Engineering[S]. AREMA: Lutherville, MD. 2023.
    [19] 中华人民共和国铁道部. 铁路碎石道砟: TB/T 2140—2008[S]. 北京: 中国铁道出版社, 2008.
    [20] 井国庆, 强伟乐, 常锦秀, 等. 针片状指数对道砟直剪力学特性的影响[J]. 西南交通大学学报, 2020, 55(4): 688-694. doi: 10.3969/j.issn.0258-2724.20180677

    JING Guoqing, QIANG Weile, CHANG Jinxiu, et al. Effect of flakiness-elongation index on shear behavior of railway ballast[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 688-694. doi: 10.3969/j.issn.0258-2724.20180677
    [21] ASADZADEH M, SOROUSH A. Direct shear testing on a rockfill material[J]. Arabian Journal for Science and Engineering, 2009, 34(2): 379-396.
    [22] 井国庆, 黄红梅, 常锦秀, 等. 清洗后的劣化道砟直剪力学特性分析[J]. 西南交通大学学报, 2017, 52(6): 1055-1060.

    JING Guoqing, HUANG Hongmei, CHANG Jinxiu, et al. Analysis of mechanical characteristics of degradation railway ballast by direct shear test[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1055-1060.
    [23] INDRARATNA B, IONESCU D, CHRISTIE H D. Shear behavior of railway ballast based on large-scale triaxial tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 439-449. doi: 10.1061/(ASCE)1090-0241(1998)124:5(439)
    [24] SUSSMANN T R, RUEL M, CHRISMER S M. Source of ballast fouling and influence considerations for condition assessment criteria[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2289(1): 87-94. doi: 10.3141/2289-12
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-03
  • 修回日期:  2024-10-17
  • 网络出版日期:  2025-10-20

目录

    /

    返回文章
    返回